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Bose-Einstein condensates have been an invaluable probe of quantum physics for the past two
decades. However, questions about quantum chaos remain unanswered. Given the correspondence
principle, we expect there to be some form of quantum chaos that approaches classical chaos as
systems become macroscopic, but there is no consensus about how this quantum chaos would present
itself. In this paper we propose a quantum analogue to a classically chaotic system—the bean
machine—and develop a numeric simulation to predict the outcome of the experiment.

I. INTRODUCTION

A. Chaos

A classic example of chaos is a bean machine, illus-
trated in Fig. 1. At each level of pegs, a ball dropped
into the machine goes either left or right, taking a ran-
dom walk in 1D. Because a small change in initial condi-
tion drastically affects the system evolution, this exhibits
classically chaotic behavior.

Given the correspondence principle, we expect there to
be some form of “quantum chaos” that approaches classi-
cal chaos as we move into the classical regime. However,
there is not yet consensus on what quantum chaos is or
what signatures it would present in a system. In order to
probe this question,1 we will construct a quantum ana-
logue to the classically chaotic system of a bean machine.
Instead of having individual balls propagating through a
pegboard, our quantum analogue will have a single quan-
tum wave function.

FIG. 1: A bean machine. Each bean takes a random
walk through the pegs, demonstrating classical chaos.

Figure from [1].

1 We are also interested in the topics of boson sampling and matter
wave interference, into which this system may provide insight.

In order to construct our quantum bean machine and
be able to observe its behavior, we require two things:

1. an imageable quantum wave function, and

2. a pegboard potential to confine our wave function.

A quick consideration of our first requirement does not
bode well; quantum mechanics stipulates that if we im-
age a quantum particle, its wave function collapses and
we find it at a single position. We are interested in the dy-
namics of the quantum wave function itself, so this will
not suffice. Perhaps we could run our experiment over
and over, slowly constructing a statistical picture of the
wave function at some time. Again, this would only give
us one snapshot in time, and we would have to run our
experiment many more times to create a dynamic model.
Fortunately, there is a much better tool in the ultracold
atomic physicist’s shed: the Bose-Einstein condensate.

B. Bose-Einstein Condensates

Bose-Einstein condensates (BECs) are a phase of mat-
ter in which quantum phenomena become macroscopic
because every particle has the same wave function. First
realized in the laboratory in 1995 (an achievement which
won the 2001 Nobel Prize), BECs are an incredibly useful
tool in contemporary experiments as probes of quantum
physics.

A BEC is a perfect candidate for our imageable quan-
tum wave function. In the Weld Lab, we make strontium-
84 BECs with approximately 8 × 104 atoms.2 Imaging
the BEC causes each atom’s wave function to collapse,
but since all of these particles occupy the same quantum
state, they statistically distribute themselves according
to the common wave function! Fig 2 shows three such
images.

2 This number is consistent to ±10%.
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FIG. 2: Momentum-space image of a 84Sr BEC in the
Weld Lab at UCSB. Temperature reaches the

condensation temperature from left to right. Figure
from [4].

In the lab, a BEC is made by optically cooling atoms3

to temperatures on the order of 10 nK. At the conden-
sation temperature Tc determined by the atom’s mass
and the gas’s density,4 the atoms condense abruptly into
the single-particle ground momentum and position state,
a discontinuous process which indicates a phase transi-
tion. In Fig. 2, this condensation process is clearly seen.
While this behavior may be expected at absolute zero,
the amazing thing about bosons is that they condense at
a finite temperature.

In the Weld Lab at UCSB, a strontium-84 (84Sr) BEC
is made in the “strontium machine” (Fig. 3) through a
number of steps:5

0. atomic oven: heat strontium and collimate through
a nozzle to form an atom beam

1. transverse cooling: laser cool perpendicular to di-
rection of atom beam to further collimate

2. Zeeman slower: laser cool using a gradient mag-
netic field and Zeeman splitting to keep the rele-
vant optical transition on resonance with the laser
as the atoms slow down

3. blue magneto-optical trap (MOT): trap and laser
cool, targeting a wide linewidth transition for fast
cooling

4. stable magnetic trap: trap atoms while transition-
ing between blue and red MOTs

5. red MOT: trap and laser cool, targeting a nar-
row linewidth transition for reaching lower temper-
atures

3 The atoms must be composite bosons. Fermions obey the Pauli
exclusion principle and thus can never all occupy the single-
particle ground state.

4 For our 84Sr BEC with 8× 104 atoms, Tc ≈ 150 nK [2]. By the
time the cooling process is over, the condensate temperature is
< 100 nK and the condensate fraction is nearly 1 [3].

5 For more detailed explanations, see Apendix A.

FIG. 3: Strontium BEC machine, with numbered
cooling steps. Figure from [2].

6. forced evaporative cooling: decrease trap depth of
optical dipole trap (ODT) to remove the warmest
atoms, leaving the others to rethermalize and form
a BEC

After we have made a BEC in the lab, we are free to
run experiments on it within the main chamber, which is
where the BEC is held.

C. The Manhattan Lattice

The AC Stark shift allows certain configurations of
lasers to create an optical potential for our BEC by in-
ducing electric dipole moments in the strontium atoms.
The bean machine is a 2D system, so we must develop a
2D potential with peg-like features through which we can
propagate our BEC. A static 2D orthogonal beam lattice
with phase-locked beams produces the potential [5]

V̄ (x̄, ȳ) =
1

2
VX cos(2kLx̄) +

1

2
VY cos(2kLȳ)

+2
√
VXVY cos(kLx̄) cos(kLȳ), (1)

where VX and VY are the lattice depths in each dimen-
sion, kL = 2π/λ is the wavenumber of the lasers, and the
bars denote a dimensionalized version of a variable which
will be nondimensionalized in §II B. If the two beams are
equal in power (VX = VY = V0), Eq. (1) becomes

V̄ (x̄, ȳ) =
1

2
V0 cos(2kLx̄) +

1

2
V0 cos(2kLȳ)

+2V0 cos(kLx̄) cos(kLȳ). (2)

We call this potential, shown in Fig. 4, the “Manhattan
lattice6” for the apparent streets of low potential and
skyscrapers of high potential.

6 Note that this potential is not a lattice in the usual sense of
the word because it does hold atoms in local minima, or “lat-
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FIG. 4: The Manhattan potential.

Now that we have an imageable wave function in the
form of a BEC and a pegboard in the form of the Man-
hattan lattice, we are ready ready to begin exploring the
quantum dynamics of our system.

II. METHODS

In addition to watching the physics unfold in the lab,
it is important to understand the theory behind the
physics and be able to replicate the dynamics we ob-
serve with simulations.7 Ironically, the problem of boson
sampling has been shown to be quantum-hard, so it is
effectively impossible to analytically solve on a classical
computer [6]. For this reason, a numerical approach is
necessitated, which we do in the Matlab language.

tice sites.” Despite this, we have chosen to use the familiar ter-
minology because there is an intuitive connection between our
potential and a typical optical lattice.

7 The complications of COVID-19 only further motivated experi-
mentalists to delve into the world of numerics. I, like many oth-
ers, made this transition unwillingly, but grew to appreciate the
deeper understanding simulations provide us. The rest of this
report thus focuses on the numeric simulation of the quantum
bean machine, not its experimental implementation.

A. Discretizing Space and Time

A numerical approach requires a discrete grid of points
to compute over. In Matlab, these are obtained by using
the meshgrid() function8 and are centered around zero.
For computational efficiency, there are N = 2n points in
both the x and y dimensions, spaced by dx. The discrete
Fourier transform allows us to go from a position-space
representation to a representation in momentum, so nat-
urally momentum space will be discretized as well with
the same number of points in each dimension and spacing

dkx =
2π

dx(N − 1)
. (3)

To discretize time, we simply choose a dt < 0.1 in
nondimensionalized units for accuracy. Because there are
often thousands of time steps, we save the wave function
at regular intervals rather than at every step. We can
then analyze the dynamics of these saved wave functions
for signatures of quantum chaos.

B. Non-dimensionalizing the Hamiltonian

In 2D with dimensionalized units, the Hamiltonian is

ˆ̄H = − ~2

2m
∇̄2 + V̄ (x̄, ȳ), (4)

where ~ is the reduced Planck’s constant, m is the mass
of the particle, and the Laplacian is

∇̄2 =
∂2

∂x̄2
+

∂2

∂ȳ2
. (5)

However, the constants in this equation tend to have very
small values, and there is a risk of losing accuracy in
computer simulations due to how computers store num-
bers. For this reason, we wish to “non-dimensionalize”
the Hamiltonian.9 First, we determine the characteristic
length and energy scales of our system,

Ls =
1

kL
Es = Er, (6)

where Er is the recoil energy of absorbing a photon,

Er =
~2k2L
2m

. (7)

With these scales, we can define dimensionless quantities
sans bars over the top:

x = kLx̄ y = kLȳ (8)

V =
V̄

Er
Ĥ =

ˆ̄H

Er
. (9)

8 See Appx. B 1 for details.
9 This also makes the numerical results applicable to any atom.
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By substituting for these values in Eqs. (2) and (4), we
obtain the dimensionless equations

V̄ (x, y) =
1

2
V0Er cos(2x) +

1

2
V0Er cos(2y)

+2V0Er cos(x) cos(y)

V (x, y) =
1

2
V0 cos(2x) +

1

2
V0 cos(2y)

+2V0 cos(x) cos(y) (10)

and

Ĥ = − 1

Er

~2

2m
∇̄2 +

V̄ (x, y)

Er

= −k2L∇̄2 + V (x, y)

Ĥ = −∇2 + V (x, y). (11)

We also have a characteristic time scale for the system,

Ts =
1

ωr
,

where ωr is the recoil frequency

ωr =
Er

~
=

~k2L
2m

.

Our time evolution uses discretized time steps in these
units.

C. Time Evolution

The time evolution operator for some infinitesimal time

dt is e−iĤdt.10 Ideally, we would like to apply this oper-
ator to our wave function to step it forward a time dt:

Ψ(x, t+ dt) = e−iĤdtΨ(x, t). (12)

However, there is not a clear way to write the Hamilto-
nian as a diagonalized matrix for a non-static potential,
so the exponent is too hard of a calculation. Instead,
we note that the (nondimensionalized) time-dependent
Schrödinger equation,

i
∂

∂t
Ψ(x, t) = ĤΨ(x, t) =

(
−∇2 + V (x, t)

)
Ψ(x, t), (13)

is in the form

∂

∂t
u = Au+Bu. (14)

For equations of this type, the approximation

e(A+B)dt ≈ eAdteBdt (15)

10 Up to a factor of ~, which is identified with unity by nondimen-
sionalizing our units.

can be made.11 In our case,

A = i∇2 B = −iV (x, t). (16)

Thus the position and momentum portions of the time
evolution operator, which we call propagators, can be
applied separately to the wave function. Because these
propagators are supposed to be applied at the same time,
an even better approximation is

e(A+B)dt ≈ eBdt
2 eAdte

Bdt
2 . (17)

There is still a problem with this plan: it is not ideal to

apply ei∇
2dt to the wave function in position space Ψ(x, t)

because (1) ∇ is not a diagonal operator in the position
basis, which makes the matrix calculation computation-
ally costly, and (2) derivatives on a discretized space must
be approximated. For these reasons, we transform both
the wave function and momentum propagator to the mo-
mentum basis:12

Ψ(x, t)→ Φ(k, t) (18)

ei∇
2dt→ e−ik

2dt. (19)

Thus our propagators are

Uk = e−ik
2dt UV = e−iV (x,t)dt/2. (20)

We step forward a time dt by multiplying by the propa-
gators, transforming between bases in between with the
discreet Fourier transform F and inverse discreet Fourier
transform F−1:

Ψ(x, t+ dt) = UV

[
F−1

(
Uk

[
F
(
UV [Ψ(x, t)]

)])]
. (21)

In its entirety, this method of numerical time propa-
gation is called the time-splitting spectral method, or
TSSP.13 Importantly, TSSP is also applicable to nonlin-
ear Schrödinger equations such as the Gross-Pitaevskii
equation mentioned in §V.

III. SIMULATION PROCEDURE

A. Initial State

Our simulation must begin with the same wave func-
tion produced by the crossed optical dipole trap (ODT)
potential in the strontium machine. Ignoring interactions

11 In general, for matrices A and B, eA+B = eAeB if and only if
[A,B] = 0, that is, if and only if they commute.

12 For details about the extra complications of the basis transfor-
mation process in Matlab, see Appx. B 2.

13 Confusingly, these letters don’t exactly match what they are ab-
breviating. Additionally, TSSP can stand for the time-splitting
sine-spectral, pseudospectral, or sine-pseudospectral methods as
well.
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between particles in the BEC,14 this potential is modelled
well by a harmonic oscillator potential and as such, the
initial state of the BEC after condensation is the ground
state of a 2D harmonic oscillator [7],

1
√
πaxay

exp

(
−1

2

(
x2

a2x
+
y2

a2y

))
, (22)

where the oscillator lengths are

ai =

√
~
mωi

kL (23)

in dimensionless units of Ls from Eq. (6). In our exper-
iment, the trap frequencies in the x and y dimensions
are ωx = 270 Hz and ωy = 430 Hz15 [2]. These are sig-
nificantly different frequencies, so we can safely assume
that these beams do not interfere with each other (or the
lattice beams), and the potential given by both lasers is
the sum of their individual potentials.

B. Ramp and Free Evolution

There are two phases to the time evolution: ramp and
free evolution. While we could simply set the initial wave
function free on top of the lattice potential, this wave
function has very high energy components not represen-
tative of a bean machine. Instead, we consider a lower
energy state by “ramping” up the lattice potential on top
of the ODT potential adiabatically from t = 0 to tramp,
a process taking around 100 ms. The ODT potential for
a harmonic oscillator is

V̄ODT =
1

2
m(ω2

xx̄
2 + ω2

y ȳ
2). (24)

As before, our x and y are unitless, so we multiply by
the square of the characteristic length scale Ls = 1/kL
to recover V̄ODT in the proper units of joules:

V̄ODT =
m

2k2L
(ω2

xx
2 + ω2

yy
2). (25)

To make the potential unitless, we divide by the charac-
teristic energy scale Es = Er and obtain

VODT =
m

2Erk2L
(ω2

xx
2 + ω2

yy
2). (26)

To make the effect of a tilted lattice similar to the tilt
of a bean machine, we add a gravitational potential which
can be adjusted for different tilts:

Vgrav = −FXx− FY y. (27)

14 A BEC is better modelled as having weakly interacting bosons,
for which the ground state is a Thomas-Fermi profile [3]. This is
discussed in §V.

15 The trap frequency of an ODT can be measured by driving the
trap at a range of frequencies until a resonant excitation is seen
in the BEC.

During the ramp period, the Hamiltonian uses the
combined ramp potential,

Vramp = VODT +
t

tramp
(Vlat + Vgrav) , (28)

and after the ramp period, we snap off the ODT potential
such that

Vfree = Vlat + Vgrav (29)

and allow the wave function to freely evolve until a time
tf .

IV. RESULTS

We have developed a tool to simulate the quantum
dynamics of a BEC in the Manhattan lattice. We can
vary experimental parameters such as BEC size, lattice
depth, lattice tilt, ramp time, and end time. We can also
vary parameters of the simulation such as position and
momentum mesh size, time step size, and how often we
store the wave function for analysis.

Our code provides a few different ways to analyze each
simulation. First, each simulation produces a gif of the
probability density |Ψ(x, t)|2 using the saved position-
basis wave functions. A few frames from a sample gif are
shown in Fig. 5.

It is also important to have results from each simula-
tion which are directly comparable to measurements we
can make in the lab of a BEC. One of these measurements
is a time-of-flight measurement where the BEC is instan-
taneously released from all optical potentials and free-
expands, effectively transforming the atom cloud into
momentum space. A picture can then be taken of the
BEC. To obtain directly comparable images from our
simulation, we can Fourier transform the saved position-
basis wave functions to create a series of momentum
space pictures.

The code and documents relating to this project
can be found at https://github.com/weldlabucsb/
Manhattan_lattice.

V. FURTHER WORK

The next expansion on our simulations will include
interactions between particles. The nondimensionalized
time-dependent Gross-Pitaevski equation (GPE) [7],

i
∂

∂t
Ψ(x, t) = −∇2 + V (x, t) + g|Ψ(x, t)|2, (30)

includes an interaction term g which accounts for inter-
particle interactions. In three dimensions, we know

g =
4π~2as
m

,
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FIG. 5: Frames from a sample evolution gif. The absolute square of the wave function is overlain with red contours
of the Manhattan potential. The first row shows the ramp stage at 2, 20, and 80 ms, while the bottom two rows

show the free evolution phase in increments of 5 ms. Border effects are noticeable in the last two frames.

where as is the s-wave scattering length.16 In two dimen-
sions, however, it is less obvious what g should be.

Using the GPE complicates our calculations in a few
other ways as well. First, the ground state of a BEC
obeying the GPE in a harmonic trap is a Thomas-Fermi
distribution, not the ground state of a simple harmonic
oscillator [7]. Second, the position propagator UV de-
fined in Eq. (20) will become time-dependent and thus
will have to be re-calculated at each time step in the
propagation, as follows [8]:

UV = exp

(
− i

2

[
V (x, t) + g|Ψ(x, t)|

]2
dt

)
. (31)

We also plan to construct a laser system for the Man-
hattan lattice and run experiments with our strontium
BEC, which can then be compared to the simulations
and analyzed for signatures of quantum chaos.

16 For 84Sr, as = 123a0, where a0 is the Bohr radius. This is a
convenient length for evaporative cooling, and why we use the
84Sr isotope despite its low abundance [3].
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FIG. 6: Laser cooling. Figure from [9].

Appendix A: Cooling Phases

1. Laser cooling

Due to the fact that photons carry momentum, when
an atom absorbs a photon, it loses the momentum of the
photon p = h/λ in the direction from which the photon
came. Excited energy levels are often unstable, and thus
the atom will re-emit a photon some time later. This ph-
totn, emitted in a random direction, also carries momen-
tum and thus “pushes” the atom as it leaves. However,
if we use a directional source for the absorbed photons
as shown in Fig. 6, there will be a net loss of momentum
for the atom in the direction of the laser, and the atom
will be cooled in that direction.

Atoms in a beam, such as in steps 1 or 2 of Fig. 3, can
be further collimated by lasers perpendicular to their di-
rection of travel and slowed by counterpropagating lasers.

2. Zeeman slowers

As an atom beam travels along the axis of a Zeeman
slower, they are slowed by laser cooling, shifting the tar-
get transition out of resonance with the laser. To com-
pensate, a gradient magnetic field continuously varies the
target optical transition via the Zeeman effect to main-
tain resonance with the cooling laser at the expected rate
of slowing.

3. Magneto-optical traps

Magneto-optical traps (MOTs) consist of two anti-
Helmholtz coils and three pairs of counter-propagating
beams, as shown in Fig. 7. The magnet coils provide
a linearly varying magnetic field that shifts the optical
transition targeted by the lasers into resonance when an
atom is moving away from the center of the trap. This
applies a force on that atom towards the center of the
trap, which simultaneously cools and traps the cloud of
atoms.

The blue MOT uses a wide linewidth (461 nm) tran-
sition for rapid cooling, while the red MOT uses a nar-
row (689 nm) transition for reaching lower temperatures.

anti-Helmholtz coils

lasers

BEC

FIG. 7: Magneto-optical trap.

FIG. 8: Energy levels of strontium. The 461 nm
transition is used for the blue MOT and the 689 nm
transition is used for the red MOT. Figure from [10].

Fig. 8 shows the level structure of strontium with the
relevant optical transitions labelled.

Appendix B: MATLAB

1. meshgrid()

For the numerical approach in Matlab, we do not have
exact functions for the wave function and each potential
which are analytically calculated. Instead, we have a
“mesh” of points in a 2D grid at which each of these
“functions” are evaluated. An example position mesh is
made below:

1 % number of points in a power of 2

2 Nx = 4;

3 Ny = 8;

4

5 % position mesh spacing in 1/kL

6 dx = 1;

7 dy = 1;

8

9 % position mesh points
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10 xVals = dx*(-Nx /2:1:Nx/2-1);

11 yVals = dy*(-Ny /2:1:Ny/2-1);

12

13 % position mesh

14 [X,Y] = meshgrid(xVals ,yVals);

The number of points affects computational effi-
ciency17 and dx and dy affect the accuracy of the simu-
lation, so we generally explicitly pick both these values
instead of substituting one for the x and y range. The
above code, when run, creates the following 8× 4 matri-
ces:

X =



−2 −1 0 1
−2 −1 0 1
−2 −1 0 1
−2 −1 0 1
−2 −1 0 1
−2 −1 0 1
−2 −1 0 1
−2 −1 0 1


Y =



−4 −4 −4 −4
−3 −3 −3 −3
−2 −2 −2 −2
−1 −1 −1 −1
0 0 0 0
1 1 1 1
2 2 2 2
3 3 3 3


(B1)

There are a couple important things to notice about
these matrices:

• There are two matrices, not one. This allows you
to use X and Y in functions similarly18 to how you
would typically use x and y variables.

• The meshgrid() function takes arguments in the
order (x,y), where x describes columns and y de-
scribes rows, as opposed to the traditional (i.j) in-
dices for (row, column) pairs in matrices.

Additionally, you may notice that zero is not centered
in these matrices. While never inherently bad for the sim-
ulation, it becomes negligible when the number of points
is on the order of 216 in each dimension.

2. fft2(), ifft2(), and fftshift()

To shift from the position to the momentum base
as described in §II C, we utilize Matlab’s built-in 2D
fast Fourier transform, fft2() and corresponding inverse
function, ifft2(), to transform back. A critical fact is
that in Matlab, the x and y values are shifted by Nx/2
and Ny/2 in the fft2() function, respectively. This
means the (1, 1) entry in the transformed matrix corre-
sponds to the first positive x and y values. x and y then
increase as you move right or down, respectively, until
they reach their maximum values (xNx/2−1, yNy/2−1) at
the center of the matrix. Then the elements jump back
to the minimum values (x−Nx/2, y−Ny/2) and increase to
(x−1, y−1) in the lower right-hand corner of the matrix.
The full matrix maps as shown:

c(x, y)=


c(x−Nx/2, y−Ny/2) . . . c(x0, y−Ny/2) . . . c(xNx/2−1, y−Ny/2)

...
. . .

...
. . .

...
c(x−Nx/2, y0) . . . c(x0, y0) . . . c(xNx/2−1, y0)

...
. . .

...
. . .

...
c(x−Nx/2, yNy/2−1) . . . c(x0, yNy/2−1) . . . c(xNx/2−1, yNy/2−1)

 (B2)

ĉ(kx, ky)=



ĉ(kx0 , ky0) . . . ĉ(kxNx/2−1
, ky0) ĉ(kx−Nx/2

, ky0) . . . ĉ(kx−1 , ky0)
...

. . .
...

...
. . .

...
ĉ(kx0

, kyNy/2−1
) . . . ĉ(kxNx/2−1

, kyNy/2−1
) ĉ(kx−Nx/2, kyNy/2−1

) . . . ĉ(kx−1 , kyNy/2−1
)

ĉ(kx0 , ky−Ny/2
) . . . ĉ(kxNx/2−1

, ky−Ny/2
) ĉ(kx−Nx/2, ky−Ny/2

) . . . ĉ(kx−1 , ky−Ny/2
)

...
. . .

...
...

. . .
...

ĉ(kx0
, ky−1

) . . . ĉ(kxNx/2−1
, ky−1

) ĉ(kx−Nx/2, ky−1
) . . . ĉ(kx−1

, ky−1
)


, (B3)

where the indices for x, y, kx, and ky, as described in Appx. B 1, range from −Ni/2 to Ni/2 − 1 and have values of
dx, dy, dkx, or dky times their index, respectively. To obtain the desired momentum-space matrix,

ĉ′(kx, ky)=



ĉ(kx−Nx/2
, ky−Ny/2

) . . . ĉ(kx0 , ky−Ny/2
) . . . ĉ(kxNx/2−1

, ky−Ny/2
)

...
. . .

...
. . .

...
ĉ(kx−Nx/2

, ky0
) . . . ĉ(kx0

, ky0
) . . . ĉ(kxNx/2−1

, ky0
)

...
. . .

...
. . .

...
ĉ(kx−Nx/2

, kyNy/2−1
) . . . ĉ(kx0

, kyNy/2−1
) . . . ĉ(kxNx/2−1

, kyNy/2−1
)

 , (B4)

17 We are actually primarily limited by memory space, as these
matrices easily take tens of gigabytes. When editing code, reduce
N and run trials locally. For larger simulations, a computer

cluster is necessary.
18 To maintain element-wise operations instead of the default ma-

trix operations, use a period before each operator (e.g. “.*” as
opposed to “*”.
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we could use the fftshift() function. In practice, it is computationally faster to apply fftshift() to our momentum
propagator defined in Eq. (20), so the actual time propagation, broken into individual steps, is as follows:

1 c = UV.*c; % propagate in position

2 c = fft2(c); % transform to momentum space

3 c = fftshift(Uk).*c; % propagate in momentum

4 c = ifft2(c); % transform to position space

5 c = UV.*c; % propagate in position
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