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This paper presents a further examination and confirmation of geodesic completeness of the double
cone spacetime, a black hole topology created by Douglass Stanford and Stephen Shenker at Stanford
University. This topology is an essential part of a calculation which will determine the quantum
properties of black holes and could ultimately help show how quantum mechanics and general
relativity fit together.

I. INTRODUCTION

The tension which arises at the intersection of gen-
eral relativity and quantum mechanics seems to present
a fundamental issue in these theories. One case in which
this tension is demonstrated is the black hole information
problem [1].

This problem can be seen in the following situation. If
we were to throw any object—say, a cat—into a black
hole, the information of this cat would be stored in the
black hole. Steven Hawking, using principles of general
relativity, argued that black holes are all slowly evap-
orating into what we call Hawking radiation, which is
essentially just heat [2]. This heat does not contain the
information which was stored in the black hole (for ex-
ample, the information of the cat), so it seems that the
information is disappearing. However, according to the
principles of quantum mechanics, such information can-
not be destroyed.

In an attempt to better understand how these two the-
ories may fit together, Douglass Stanford and Stephen
Shenker of Stanford University set out to prove that black
holes do, in fact, behave as quantum systems. One way to
support this idea is to show that black holes have discrete
energy states. Stanford and Shenker created a topology
known as the double cone spacetime, which is a key part
of the calculation of these energy states [3].

It was initially unclear whether the topology was suffi-
ciently complete to give an accurate result to the calcu-
lation of energy states. This paper presents a further ex-
amination of this double cone spacetime through a math-
ematical shift into complex space.
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II. THEORY

A. Stanford and Shenker’s Calculation

The calculation of each energy level would be difficult.
It is easier to instead calculate the average of two sums
of the energy levels by the formula∑

E,E′

eiT (E−E′). (1)

(1) can be computed by a path integral that sums over
spacetimes having two boundaries and where time has
period T in each boundary:∫

G

eiS/~Dg. (2)

In (2), S is the action for general relativity, Dg is the
standard measure on the space of geometries, and G rep-
resents all metrics that satisfy the above boundary con-
ditions. Using the stationary phase approximation, this
path integral can be approximated by

eiS(g0)/~. (3)

In (3), S(g0) is a function of g0, the metric at which S
is stationary. This metric can be found using classical
solutions of Einstein’s equations that satisfy the above
boundary conditions.

B. The double cone spacetime

The topology which gives the metric g0 is called
the double cone spacetime. In order to understand
this topology, we must first understand the Minkowski
spacetime diagram.
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On this diagram, an object at a constant proper dis-
tance from the origin (i.e. an object which is not moving
in the object’s own frame of reference) will follow a
hyperbolic path (for example, the green line) rather than
a straight path. This is because the frame of reference in
a Minkowski diagram is a freely falling frame—one that
is actually accelerating in the aforementioned object’s
reference frame. A line which remains at a constant
proper time away from the origin will follow a similar
hyperbolic path, but it will be in the top or bottom
quadrant rather than the left or right. The worldline of
an object in free fall with zero velocity relative to the
reference frame of the diagram will be a vertical line. As
this relative velocity increases, the worldline will rotate
along the hyperbola. The angle of rotation is called the
boost parameter, η. It is important to note that as the
boost parameter approaches infinity, the worldline will
approach (but never cross) the red lines, which are the
worldlines of light.

Another important concept is the spatial planes. As
the velocity of the object increases, the spatial plane of
the object will be offset from the x axis by this same

boost parameter.
A black hole on a similar spacetime diagram would

look like this [4].

The spatial planes described in the previous para-
graph could also be placed on this black hole diagram.

To form the double cone spacetime, we will quotient the
blue region of this diagram. The following example pro-
vides an intuitive explanation of the quotienting process.
(For more information on quotienting, see [5].)

Imagine gluing two ends of a rectangle together to form
a cylinder, as shown in the following figure. This process
is called identifying the lines.

The figure below shows a similar process; we can imag-
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ine taking a series of rectangles and folding them into
a cylinder of the same circumference as our single-
rectangle cylinder. Each subsequent rectangle will cre-
ate a cylinder which overlaps on top of the original
cylinder. We say that the points on these rectangles
are “mapped” to points which they lay on top of in
the original rectangle (and, subsequently, the original
cylinder). This final cylinder is called the quotient.

To take the quotient of our black hole geometry, we
will first take out the top and bottom quadrants. This is
because every point in the region which we quotient must
be able to be mapped to the region between the planes
of space by the boost parameter.

Next, we will take all of the points outside of the two
planes of space and map them to points within the re-
gion.

Finally, we will roll this region into the cone by identify-
ing the two planes of space. This creates the double cone
spacetime.

C. The question

Each point within the blue region can be mapped to a
point on the double cone spacetime. However, an object
in free fall that starts outside of the black hole in the
flat space (the space before the quotient) will eventually
reach the black hole region, which cannot be mapped
to any points on the cone. Object 1 on the following
diagram follows one possible worldline of a freely falling
object.
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It is unclear what happens to this object in the double
cone spacetime. Therefore, we will be examining what
happens to a freely falling object in the double cone
spacetime in order to determine if this topology is com-
plete. If the object does not leave the region, we call the
space geodesically complete. (See Appendix A for a fur-
ther explanation of geodesic completeness.) In this case,
we can conclude that the double cone spacetime provides
a complete picture of the spacetime geometry necessary
for the calculation. However, if the object leaves the re-
gion after a finite amount of proper time, we may need to
make modifications—such as the addition of another dou-
ble cone representing the top and bottom quadrants—to
the spacetime in order to get an accurate calculation.

III. METHOD

In order to find the solution, we must shift the graph
slightly into the four dimensional complex plane before
taking the quotient. If we fix the boundary conditions
to be the same as the boundary conditions in real space,
this shifted geometry will give us the same answer to
the calculation of S0 (according to the Cauchy integral
theorem).

IV. CALCULATIONS

Coordinates of space (x) and time (t) can be translated
into coordinates of the boost parameter (η) and rho (ρ)
by the following equations:

x = ρcosh(η) (4)

t = ρsinh(η). (5)

To shift the graph slightly into the i dimension, we must
add iε to ρ. To maintain proper boundary conditions, we

must also make ε dependent on ρ such that limρ→∞ ε = 0.

We are primarily interested in the limits of the real
and imaginary parts of x and t at the boundaries of
the right region, as this will tell us what happens to
the worldline of the previously mentioned object as it
continues in free fall. (See Appendix B for calculations
of the left quadrant.) At the upper limit of the right
quadrant, η approaches ∞ and ρ + iε approaches iε.
Knowing this, we can calculate the upper boundary
limits of x and t:

x = lim
ρ+iε→iε, η→∞

(ρ+ iε)cosh(η) = i∞ (6)

t = lim
ρ+iε→iε, η→∞

(ρ+ iε)sinh(η) = i∞. (7)

At the lower boundary of the right quadrant, η ap-
proaches −∞ and ρ + iε approaches iε. Knowing this,
we can calculate the lower boundary limits of x and t:

x = lim
ρ+iε→iε, η→−∞

(ρ+ iε)cosh(η) = i∞ (8)

t = lim
ρ+iε→iε, η→−∞

(ρ+ iε)sinh(η) = −i∞. (9)

Because x goes to i∞ at both the upper and lower bound-
aries, we need to calculate the limit of x at a different
point to find the range of x. It turns out that the min-
imum value of x occurs at the intersection of the upper
and lower boundaries, where η approaches 0 and ρ + iε
approaches iε

x = lim
ρ+iε→iε, η→0

(ρ+ iε)cosh(η) = iε. (10)

To summarize, the limits of x are [iε, i∞], and the limits
of t are [−i∞, i∞]. This is equivalent to saying the limits
of the imaginary part of x are [−∞,−ε], the limits of the
imaginary part of t are [−∞,∞], and the real parts of x
and t are all finite—they have a value of 0 at the upper
and lower boundaries of the right region.

V. RESULTS

The above calculations tell us that the worldline of an
object in free fall will no longer leave the right region.
This is because the imaginary parts of space and time
are no longer finite after the shift. While it is difficult to
imagine this four dimensional space, we can gain a more
intuitive understanding of the geometry by examining the
parts.
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The real parts of space and time remain finite after the
shift.

The imaginary part of t approaches ∞ as η approaches
∞, which is at the event horizon of the black hole region.

The imaginary part of x also approaches ∞ as η ap-
proaches ∞.

We can conclude that the double cone spacetime gives
a complete picture of what happens to an object in free
fall—we say it is geodesically complete.

VI. CONCLUSIONS

The double cone spacetime created by Douglass
Stanford and Stephen Shenker is a geodesically complete
topology and is thus valid for use in the calculation of
quantum properties of black holes.
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Appendix A: Geodesic Completeness

The concept of geodesic completeness can be demon-
strated through the previous example of quotiented rect-
angles. A geodesic is the shortest possible line between
two points. On this series of rectangles, we will assign
point 1 to be at the beginning of the first rectangle and
point 2 to be at the end of the last rectangle. A geodesic
between these two points would look like the orange line
on the following diagram.

After we take the quotient of the rectangles, the same
line will still exist, it will just be mapped to points on the
cylinder. We can then say that this cylinder is geodesi-
cally complete because the full geodesic still exists on the
cylinder.

It is important to note that, in our black hole geome-
try, we do not have a finite plane like the series of rectan-
gles. Therefore, a geodesic across the space will be infi-
nite. To understand the concept of geodesic completeness
where the geodesic is infinite, we can imagine an infinite
number of rectangles in the above example. When these
rectangles are quotiented, there are an infinite number of
rectangles wrapped around the cylinder, and the infinite
geodesic is still present.
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Appendix B: Left Region Calculations

At the upper limit of the left quadrant, η approaches
−∞ and ρ + iε approaches iε. Knowing this, we can
calculate the upper boundary limits of x and t:

x = lim
ρ+iε→iε, η→−∞

(ρ+ iε)cosh(η) = i∞ (B1)

t = lim
ρ+iε→iε, η→−∞

(ρ+ iε)sinh(η) = −i∞. (B2)

At the lower boundary of the left quadrant, η approaches
∞ and ρ + iε approaches iε. Knowing this, we can cal-
culate the lower boundary limits of x and t:

x = lim
ρ+iε→iε, η→∞

(ρ+ iε)cosh(η) = i∞ (B3)

t = lim
ρ+iε→iε, η→∞

(ρ+ iε)sinh(η) = i∞. (B4)

As in the right region, we need to calculate the limit of
x at the intersection of the upper and lower boundaries,
where η approaches 0 and ρ+ iε approaches iε:

x = lim
ρ+iε→iε, η→0

(ρ+ iε)cosh(η) = iε. (B5)

The left region turns out to have the same limits of t as
the right region. The limits of x change to [−i∞, iε], but
this would still give us a geodesically complete region—
the imaginary part of x would just bend in the opposite
direction.
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