Simulating Quantum Dynamics in an Optical Lattice

Addison Hartman

Amherst College

Physics REU, University of California, Santa Barbara

14 August 2020

Bose-Einstein condensates (BEC)s

Cooling phases

- 0. Atomic oven
- I. Transverse cooling
- 2. Zeeman slower
- 3. Blue MOT
- 4. Stable magnetic trap
- 5. Red MOT
- 6. Evaporative cooling

Optical lattices

laser light

"Manhattan" lattice

Motivating topics

- Quantum chaos
- Matter wave interference
- Boson sampling / quantum supremacy

L Universite ² Laboratoire ³ Laboratoire de	condensed (Mark A. KASEVICH		superconduct	remacy using a ing processor
We study a atom laser, are tunable. behavior as Our experim numerical sin This system ground for cl PACS number The realization and th condensates (BECs) has atom-atom interactions partial waves elastic scat duce accurate determini 2], the possibility of taik either magnetic [3] or op been demonstrated, and	Physics Dep E-mail: mar (Reçu le 12 j Abstract.	artment, Yal k.kasevich@ anvier 2001. We assess interferom in optical for measu states. We of Schröd system m bosonic s sciences/É	https://doi.org/10.1038/s41586-019-1666-5 Received: 22 July 2019 Accepted: 20 September 2019 Published online: 23 October 2019	Frank Arute ¹ , Kunal Arya ¹ , Ryan Babbush ¹ , Rupak Biswas ³ , Sergio Boixo ¹ , Fernando G Yu Chen ¹ , Zijun Chen ¹ , Ben Chiaro ⁵ , Rober Edward Farhi ¹ , Brooks Foxen ¹⁵ , Austin Fov Keith Guerin ¹ , Steve Habegger ¹ , Matthew Markus Hoffmann ¹ , Trent Huang ¹ , Travis S Zhang Jiang ¹ , Dvir Kafri ¹ , Kostyantyn Kec ¹ Alexander Korotkov ^{1,8} , Fedor Kostritsa ¹ , D Dmitry Lyakh ⁹ , Salvatore Mandrà ³¹⁰ , Jarr Anthony Megrant ¹ , Xiao Mi ¹ , Kristel Michi Ofer Naaman ¹ , Matthew Neeley ¹ , Charles Andre Petukhov ¹ , John C. Platt ¹ , Chris Qu. Nicholas C. Rubin ¹ , Daniel Sank ¹ , Kevin Ju. Matthew D. Trevithick ¹ , Amit Vainsencher Z. Jamie Yao ¹ , Ping Yeh ¹ , Adam Zalcman ¹ ,
		Bose-Ein		The promise of quantum computers is executed exponentially faster on a qua fundamental challence is to build a hig
	Résumé.	Interfér Nous éva comme so		algorithms in an exponentially large co processor with programmable superco 53 qubits, corresponding to a comput- Measurements from repeated experin distribution, which we verify using class
				about 200 seconds to sample one inst

G. Atom interferometry with Bose–Einstein Condensed : Quantum supremacy using a programmable

Exploring classically chaotic potentials with a matter wave quantum probe

i.org/10.1038/s41586-019-1666-5 Frank Arute¹, Kunal Arya¹, Ryan Babbush¹, Dave Bacon¹, Joseph C. Bardin^{1,2}, Rami Barends¹, Rupak Biswas³, Sergio Boixo¹, Fernando G. S. L. Brandao^{1,4}, David A. Buell¹, Brian Burkett¹, Yu Chen¹, Zijun Chen¹, Ben Chiaro⁵, Roberto Collins¹, William Courtney¹, Andrew Dunsworth¹, Edward Farhi¹, Brooks Foxen^{1,5}, Austin Fowler¹, Craig Gidney¹, Marissa Giustina¹, Rob Graff¹, Keith Guerin¹, Steve Habegger¹, Matthew P. Harrigan¹, Michael J. Hartmann^{1,6}, Alan Ho¹, Markus Hoffmann¹, Trent Huang¹, Travis S, Humble⁷, Sergei V, Isakov¹, Evan Jeffrev¹, Zhang Jiang¹, Dvir Kafri¹, Kostyantyn Kechedzhi¹, Julian Kelly¹, Paul V. Klimov¹, Sergey Knysh¹, Alexander Korotkov^{1,8}, Fedor Kostritsa¹, David Landhuis¹, Mike Lindmark¹, Erik Lucero¹, Dmitry Lyakh⁹, Salvatore Mandrà^{3,10}, Jarrod R. McClean¹, Matthew McEwen⁵, Anthony Megrant¹, Xiao Mi¹, Kristel Michielsen^{11,12}, Masoud Mohseni¹, Josh Mutus¹, Ofer Naaman¹, Matthew Neeley¹, Charles Neill¹, Murphy Yuezhen Niu¹, Eric Ostby¹, Andre Petukhov¹, John C. Platt¹, Chris Quintana¹, Eleanor G. Rieffel³, Pedram Roushan¹, Nicholas C. Rubin¹, Daniel Sank¹, Kevin J. Satzinger¹, Vadim Smelyanskiy¹, Kevin J. Sung^{1,13}, Matthew D. Trevithick¹, Amit Vainsencher¹, Benjamin Villalonga^{1,14}, Theodore White¹, Z. Jamie Yao¹, Ping Yeh¹, Adam Zalcman¹, Hartmut Neven¹ & John M. Martinis^{1,5*}

The promise of quantum computers is that certain computational tasks might be executed exponentially faster on a quantum processor than on a classical processor¹. A fundamental challenge is to build a high-fidelity processor capable of running quantum algorithms in an exponentially large computational space. Here we report the use of a processor with programmable superconducting qubits²⁻⁷ to create quantum states on 53 qubits, corresponding to a computational state-space of dimension 2^{53} (about 10^{16}). Measurements from repeated experiments sample the resulting probability distribution, which we verify using classical simulations. Our Sycamore processor takes about 200 seconds to sample one instance of a quantum circuit a million times-our benchmarks currently indicate that the equivalent task for a state-of-the-art classical supercomputer would take approximately 10,000 years. This dramatic increase in

Classical chaos

Manhattan lattice as a Galton board

Galton board, video from <https://galtonboard.com/>.

Manhattan lattice potential, figure generated with Peter Dotti's code. 10

in the lab

on the computer

Numerical approach using MATLAB

I. Simulate BEC wave function's initial state in an optical dipole trap

2. Simulate the potential grid of the lattice

3. Time-evolve the system through ramp and free evolution

Time evolution

$$\begin{array}{c}
\Psi(\mathbf{x},t) \rightarrow e^{-i\hat{H}dt} \rightarrow \Psi(\mathbf{x},t+dt) & \text{HARD!} \\
i\frac{\partial}{\partial t}\Psi(\mathbf{x},t) = \hat{H}\Psi(\mathbf{x},t) = \left(-\nabla^{2} + V(\mathbf{x},t)\right)\Psi(\mathbf{x},t) \\
\frac{\partial}{\partial t}\Psi = A\Psi + B\Psi \\
e^{(A+B)dt} \approx e^{Adt}e^{Bdt} \\
A = i\nabla^{2}, B = -iV(\mathbf{x},t) \\
\Psi(\mathbf{x},t) \rightarrow e^{i\nabla^{2}dt} \rightarrow \Psi'(\mathbf{x}) \rightarrow e^{-iVdt} \rightarrow \Psi(\mathbf{x},t+dt) & \text{EASIER} \\
\Psi(\mathbf{x},t) \rightarrow \mathcal{F} \rightarrow \Phi(\mathbf{k},t) \rightarrow e^{-i\mathbf{k}^{2}dt} \rightarrow \Phi'(\mathbf{k}) \rightarrow \mathcal{F}^{-1} \rightarrow \Psi'(\mathbf{x}) \rightarrow e^{-iVdt} \rightarrow \Psi(\mathbf{x},t+dt) & \text{EASIEST} \\
e^{(A+B)dt} \approx e^{\frac{Bdt}{2}} e^{Adt}e^{\frac{Bdt}{2}} & \text{ACTUAL} \\
\Psi(\mathbf{x},t) \rightarrow e^{-iWdt} \rightarrow \Psi'(\mathbf{x}) \rightarrow e^{-i\mathbf{k}^{2}dt} \rightarrow \Phi'(\mathbf{k}) \rightarrow e^{-i\mathbf{k}^{2}d$$

Evolving a Gaussian

14

Next step: interactions!

Schrödinger equation:

$$i\hbar\frac{\partial}{\partial t}\Psi = \hat{H}\Psi = \left(-\nabla^2 + V(\mathbf{x})\right)\Psi$$

Gross-Pitaevskii equation:

$$i\hbar\frac{\partial\Psi}{\partial t} = \left(-\frac{\hbar^2}{2m}\nabla^2 + V(\mathbf{x}) + g|\Psi|^2\right)\Psi$$

interaction term

Summary

Question: quantum dynamics in Manhattan lattice

Numerical approach: time-splitting

Experimental approach: Bose-Einstein condensates

Acknowledgements

David Weld,

Peter Dotti, Mentor

AMHERST.

TERRAS IRRADIENT

MDCCCXX

Toshi Shimasaki

Quinn Simmons

Roshan Sajjad Jared Pagett

Enrique Morell-Salcedo

Jeremy Tanlimco

Alec Cao

Max Prichard

Katya Weiss

Jack Pan

CC

.

È

S

VO

Bosons vs. Fermions

ground state

The Zeeman effect

https://upload.wikimedia.org/wikipedia/commons/5/56/Breit-rabi-Zeeman.png.

Magneto-optical traps

Robinson, J0hn M, Liu, Yu, Shelton, David P. "Development and Characterization of a Magneto-Optical Trap for Rubidium." Nevada State Undergraduate Research Journal. V1:I1 Fall-2014. (2014). <u>http://dx.doi.org/10.15629/6.7.8.7.5_1-1_F-2014_2</u>.

Strontium-84 level structure diagram, figure from Stellmer thesis.