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Analog quantum simulation using trapped ultracold atoms can be used to investigate natural pro-
cesses at more accessible time and energy scales with highly tunable parameters. Ultrafast electronic
dynamics of atoms in strong laser fields is one such area that can be challenging to investigate ex-
perimentally. In particular, recent theoretical proposals have shown how high-harmonic generation
spectra can be accessed with cold atom simulators to address outstanding questions and theoretical
inconsistencies. Here we describe an experimental apparatus for simulating strong field interactions
using trapped ultracold atoms and structured light fields that is robust against noise and aberra-
tion. We detail the use and optimization of a digital micromirror device to shape a linear intensity
gradient and demonstrate how an iterative algorithm can be used to improve light pattern fidelity
and achieve target accuracy in the chemical potential applied to the atoms.

I. INTRODUCTION

A deep understanding of ultrafast electronic dynamics
is increasingly important in a wide range of disciplines,
where these dynamics provide descriptions of phenom-
ena seen at angstrom and attosecond levels. The motion
of electrons in these realms is responsible for emergent
behavior in nearly every composite system, the impor-
tance of which is emphasized by the 2023 Nobel prize in
physics for advances in techniques to probe behavior at
these scales. However, the inherent difficulty of accessing
configurable, interesting experimental regimes has moti-
vated alternate approaches to the study of ultrafast dy-
namics.

In recent years, quantum simulation has been demon-
strated as a useful technique by which to investigate var-
ious physical systems of scientific interest [1]. In par-
ticular, neutral atom analog quantum simulators have
been used to study ultrafast processes [2–4], where rela-
tive time scales are generally increased by many orders of
magnitude. These simulators are comprised of a system
whose behavior is described by a Hamiltonian directly
mappable to that of the process being simulated and are
able to reconstruct a wide variety of dynamics and mea-
sured observables.

One such process of interest is high-harmonic gener-
ation (HHG) [5–7] wherein an atom illuminated with a
strong laser light pulse emits harmonics of the incident
light frequency upon recombination to the ground state.
Accessing HHG experimentally in a tunable way with
high time and energy resolution is non-trivial, and ana-
log quantum simulation promises an easier platform with
which to explore this phenomenon [8]. Such a platform
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allows for new capabilities in studying HHG in settings
including solid-state media and non-classical light sources
where traditional theoretical models have shown incon-
sistent results [8, 9]. Natural HHG experiments typically
utilize a macroscopic cloud of a noble gas, making pre-
cise study of HHG in a single atom difficult. Being able
to simulate HHG in a single atom directly is a valuable
tool to access challenging experimental regimes and to
benchmark developing models with tunability not often
possible in direct experiments.
By simulating the nuclear potential and electric field-

dipole interaction over a few-cycle light pulse using struc-
tured light incident on a trapped Bose–Einstein conden-
sate (BEC), we can reconstruct the electronic dynamics
that lead to HHG. The harmonic emission spectrum can
then be accessed through position or momentum mea-
surements of the BEC that map to dipole moment os-
cillations responsible for emission. Here we describe the
physics of HHG, how it can be simulated, and a portion
of the experimental setup needed to generate simulated
forces using a digital micromirror device (DMD) on a
84Sr quantum simulator.

II. THEORY

A. Strong field dynamics

We first introduce a qualitative treatment of the in-
teraction of a bound electron with a strong electric field
[5, 8, 10]. When high-intensity coherent radiation is inci-
dent on an atom, the resultant interactions with the elec-
tronic wavefunction give rise to a rich variety of highly
non-classical phenomena. In the strong-field regime, the
laser electric field interacts with the electron charge in a
way that cannot be treated perturbatively. If the elec-
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tron position is denoted by r, then its potential energy is
given (in atomic units) under the dipole approximation
as

V (r, t) = Vatom(r) + r ·E(t) (1)

where E(t) is the laser electric field and Vatom(r) refers
to the effective nuclear Coulombic potential. Assuming a
pulse waveform linearly polarized in the x direction, the
field can be written E(t) = E0f(t) sin(ωt+ϕ), where f(t)
is a some pulse envelope function.

When the field is strong (i.e., E0 is large), the initial
interaction with the electron effectively lowers the nu-
clear Coulombic potential, allowing the electron to tun-
nel or escape from its parent atom. Under the strong
field approximation, the escaped electron behaves as a
free particle with zero initial velocity. As the system
evolves in time and the pulse cycle changes sign, the elec-
tric field accelerates the electron back toward the nucleus
and they interact. During this process, a portion of the
electron wavefunction interferes with itself, resulting in
an oscillation of the dipole moment. This leads to har-
monic emissions at higher frequencies that depend on the
pulse form, intensity, and nuclear potential. This process
of electron excitation, excursion, and emission is called
high-harmonic generation.

B. Optical dipole force

Trapped ultracold atoms used in the simulator must
be configured in such a way that their collective wave-
function mimics another physical system. For simulating
the combined potential of the nuclear interaction and the
dipole interaction in eq. (1), the technique that we em-
ploy is based on the optical dipole force arising from the
a.c. Stark effect. Here we briefly review how this force
arises and its use in quantum simulation experiments.

As noted previously, the interaction of an electric field
with the induced dipole moment of the atom results in
a potential energy change [11]. The dipole moment aris-
ing from the separation of charges in the atom is itself
proportional to the electric field and can be expressed
as ϵ0χaE, where ϵ0χa is the scalar polarizability. The
optical dipole potential can then be written as

V = −1

2
ϵ0χaE

2 (2)

A perturbation theory treatment expresses eq. (2) in
terms of atomic properties [11] as

V (r, t) =
ℏΓ2

8δ

I(r, t)

Isat
(3)

The optical dipole force is the conservative force arising
from the gradient of this potential and is proportional to
the gradient of intensity:

FODF(r, t) = ∇V (r, t) =
ℏΓ2

8δIsat
∇I(r, t) (4)

By deterministically configuring the spatio-temporal
intensity distribution of light incident on trapped atoms,
an aribtrary potential energy landscape can be config-
ured to match that of another physical system. Values
of physical observables in the system of interest can then
be extracted through measurements on the atoms used
in the simulator.

C. Simulating HHG

To simulate the HHG process, the BEC wavefunction
must experience similar forces to a bound electron expe-
riencing a strong laser pulse. The Coulombic potential
is approximated by a Gaussian and can be simulated us-
ing a simple Gaussian beam incident on the BEC. For
linear polarization, the potential from the dipole inter-
action with the laser pulse takes the form E(t)x. At
some time t, this force can be reconstructed in the sim-
ulator using a linear intensity gradient. The intensity is
modulated in time to match the pulse waveform modula-
tion. Arbitrary modulation capabilities allow for tuning
the duration, frequency, amplitude, and cycle number of
this pulse, parameters which cannot be tuned arbitrar-
ily with real lasers in direct HHG experiments. In this
way, the BEC potential landscape can be dynamically
sculpted to mimic the electron potential in a strong field
environment.
The HHG spectrum can then be accessed through mea-

surements of the dipole moment. The emission yield is
proportional to the dipole acceleration, which can be re-
constructed from the dipole velocity. The equivalent ob-
servable to the dipole moment velocity is the momentum
distribution of the BEC. This can be retrieved through
a time of flight measurement, wherein the BEC trap is
turned off and the atoms are allowed to expand for a finite
time before being imaged and the velocity calculated.

III. OPTICS AND HARDWARE

A. Digital micromirror devices

In order to create a beam with a linear intensity trans-
verse cross section, we employ a DMD to selectively
transmit light according to a prescribed pattern [12, 13].
The DMD is composed of an array of addressable mi-
croscopic mirrors that articulate about their diagonal,
directing light either to further collection optics or to be
discarded. Mirrors are by default in a “parked state”
where they are oriented at a flat 0◦. The “on” and “off”
states correspond to a respective positive and negative
12◦ tilt from the normal.
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The DMD is non-trivial to treat theoretically, with the
traditional blazed grating assumption failing to give ac-
curate predictions [13–15]. Contrary to the prediction
yielded by a simple blazed grating model, ref. [13] found
maximum first order diffraction efficiency was achieved
when the incident beam angle was 12◦, the same as the
DMD mirror tilt angle. In our setup, the input beam is
close to this angle, and we achieve efficiencies within 5%
of the theoretical maximum described in [13].

The full optical setup for testing and development is
described in appendix A. More information on DMD con-
trol is available on the Weld lab internal wiki [16].

B. Power considerations

The DMD arrangement must be such that the linear
gradient opposes the direction of gravity and imparts a
force greater than that of gravity on the atoms. An
acousto-optic modulator (AOM) is then used to mod-
ulate the intensity in time to follow the amplitude of a
pulse waveform. The pulse zero crossing is at a force that
corresponds to an acceleration of 1g. The force imparted
on the atoms by the incident light must then be strictly
greater than the force of gravity.

We can calculate the force generated by an incident
beam following eq. (2). We express the intensity as

I(r, t) = T (t)
P0

A

y

y0
(5)

where P0 is the incident power, A is the cross-sectional
image area, T (t) = E(t)/E0 is the time variation of the
pulse waveform, and y0 is the vertical distance over which
the gradient extends. From eqs. (2) and (4), the force is

F (y, t) =
ℏΓ2

8δIsat

P0T (t)

Ay0
(6)

Since the force is proportional to the beam power P0, the
power considerations of all optical components is impor-
tant to ensure that the force is high enough to get above
the 1g waveform zero crossing.

Source Measured eff.
AOM 0.8

Spatial filter 0.95
DMD main order 0.349

Gradient 0.30
Total Eff. 0.080

TABLE I: Measured efficiencies for test setup.

With an initial 10W output from the laser, this re-
stricts the atom incident power to P0 = 0.8W. Assuming
an area of A = 50 × 100µm2, this results in a force of
3.48 × 10−24 N or an acceleration of 2.54g experienced
by 84Sr atoms from eq. (6).

C. DMD imaging

FIG. 1: (a) Beam cross section diagram showing correction for
beam curvature required to create a flat top profile. (b) Target
intensity, fitted input beam intensity, and computed desired

reflectance profiles for linear gradient.

To project a linear intensity gradient using the DMD,
the continuous target image (single-channel 8-bit inte-
ger valued, in our setting) is dithered into a binary ar-
ray. This is accomplished through the Floyd-Steinberg
error diffusion algorithm, which is natively implemented
in Python’s PIL library. This algorithm has been shown
to perform more favorably than random dithering [17]
but can lead to large scale periodic structures in the
dithered image that are not present in the original contin-
uous one. Other groups have seen improvements using a
modified Floyd-Steinberg algorithm which adds random
noise in the error diffusion step [18]. We do not observe
any macroscopic periodicity in the linear gradient, so cur-
rently this solution is not implemented.

The DMD illumination beam is a Gaussian mode with
characteristic curvature over the scale of the DMD win-
dow. This results in non-uniformity that appears in the
reflected DMD image. To account for this, the displayed
DMD image D0(x, y) is modified to divide out the beam
profile [19]. The beam profile is computed by imaging the
DMD with a solid field displayed and computing a 2D
Gaussian fit. The fit is used instead of the raw image to
reduce the impact of noise, fringing, and normalization is-
sues from bad pixels. Since the intensity is the measured
quantity, the DMD image accounts for the amplitude re-
flection through a square root. The final expression for
the initial continuous DMD image (before dithering) is
[19]
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FIG. 2: Feed forward optimization. (Left) Initial measured intensity and error map for linear gradient. (Right) Measured intensity and
error map after seven feed forward iterations with step size η = 0.2.

D0(x, y) =

(
target(x, y)

beam(x, y)

)1/2

(7)

where beam(x, y) is the 2D Gaussian fit of the beam and
target(x, y) is the desired intensity distribution (here a
linear gradient). This expression leads to a much more
accurate measured gradient than simply displaying a gra-
dient image and provides adequate initial conditions for
further optimization.

The DMD controller chip updates the mirror states ev-
ery 105µs. The mirrors briefly unlatch from their current
state before being flipped to their next state. However,
this occurs even when the mirror state does not change
on the next frame, leading to undesired motion of mirrors
even when a static pattern is displayed. This results in
high frequency flickering of the DMD output image visi-
ble on a photodiode in the 10kHz range which can lead to
undesired heating effects when projected onto the atoms
[20]. This issue is addressed by interrupting the mirror
clock pulse (MCP) sent from the DMD controller chip to
the DMD itself. Further detail of our implementation is
given in Appendix B.

With this fix and the DMD pattern computed from
eq. (7), the linear gradient is improved but still not at
a high enough fidelity. To enhance the quality of the
projected gradient, we use software solutions to optimize
for best quality.

IV. SOFTWARE OPTIMIZATION

A. Initial processing

Before characterization and optimization of the DMD
images can be performed, they must first be processed.
This consists of transformation, fringe removal, and nor-
malization steps.

In the image captured on the beam profiler, the DMD
output is shown as a scaled, rotated, and noisy version of
the image displayed on the DMD. For comparison to the
target image, the captured image must be transformed
back to the same resolution rectangle as the DMD dis-
play. The rotation, translation, and scaling information
is encoded in an affine transformation represented by a
2 × 3 matrix M that contains both the linear map and
the translation.

M =
[
A B

]
=

[
a00 a01 b0
a10 a11 b1

]
(8)

Encoding a two dimensional input point (x, y) as an

augmented vector v =
[
x y 1

]⊤
, the corresponding

transformed point w =
[
x′ y′ 1

]⊤
is given by the prod-

uct w =Mv.
The matrix M can be defined by three pairs of points

in the domain and the codomain. For our application, the
three input points are manually selected as three of the
corners of the DMD image as seen on the beam profiler,
and the second set of points are the corresponding cor-
ners of the DMD image itself. Other works have shown
an automated method of computing the coefficients ofM
through gradient descent by maximizing the overlap be-
tween the DMD displayed image and the image captured
on the beam profiler [21]. We have found good stability
with the manual method and are not concerned with op-
timizing high resolution structures in the projected pat-
tern, so this procedural mapping method was deemed
unnecessary.
Once the mapping between pixels in the measured and

target images is found and the transformation is per-
formed, the two images can be compared. However, aber-
rations and fringing in the imaging path prevent unbiased
quantitative comparisons. Several methods for fringe re-
moval were attempted, and one was found to be success-
ful for our application.
The most straightforward approach was a spatial low
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FIG. 3: Continuous Morlet wavelet transforms for two rows
showing row variation in fringe signal.

pass filter, which only became successful at removing
fringes at cutoff frequencies high enough that they were
contributing to the formation of the gradient. Filter-
ing out fringes would also result in unwanted distortions
at the edges of the image. A second approach was at-
tempted that was based on the continuous wavelet trans-
form and introduced in [22]. A wavelet is a function
ψ : C → C which defines a basis for L2(C) composed of
transformations of ψ [23]. Coefficients of some arbitrary
function in this basis can provide information about its
frequency components that vary over the function do-
main.

This is conceptually similar to the Fourier basis, and
indeed wavelets admit a decomposition similar to the
Fourier transform known as the continuous wavelet trans-
form, defined for a sequence {xn} (which corresponds to
the image) as [23]

Wn(s) =

N∑
n′=1

xn′ψ∗
(
(n′ − n)δt

s

)
(9)

where s is a wavelet scale and here n indexes along the im-
age columns. Practically, a convenient choice of wavelet
such as the Morlet wavelet (a Gaussian-windowed com-
plex plane wave) can yield a transformation that provides
spatially-resolved frequency information. Ref. [22] intro-
duced the application of wavelet transforms to remove
fringes. The wavelet transform displays high intensity re-
gions which correspond to fringe spatial frequencies that
can be subtracted out. An inverse wavelet transform
then recovers the image without these fringes present.
Wavelet transforms for two rows of a gradient image are
shown in fig. 3. The high amplitude frequencies where
fringes are present visibly differ from row to row. The
observed fringe spectra have a large degree of variation
across row and column, making automated fitting and
identification of the fringe components for removal as in
[22] not straightforward.

The last and most successful method for fringe and
noise removal is to use a computed flat field. A solid
field image is captured that can then be used to normal-
ize other images and remove persistent fringes. Time-
independent intensity variations of the DMD input beam

FIG. 4: DMD test setup optical diagram.

and collection optics, however, want to be preserved so
that they can be corrected for in later optimization steps.
Speckle patterns resulting from random interference of
coherent light also pose an issue but are harder to detect
in our imaging setup than scattering from larger dust
particles. Reduction in undesirable speckle and interfer-
ence can be attained by use of an incoherent illumination
source [24], but with our coherent source setup further
noise reduction methods were found to be necessary. A
näıve flat field collection approach of simply displaying a
solid field on the DMD or replacing it with a mirror will
reflect the intensity profile of the input beam.
One solution to combat this issue is to use a computed

flat field image. Computing this flat field is first done by
displaying a solid field on the DMD and capturing the
image. This image is then smoothed using a 10×10 con-
volution kernel before fitting to a 2D Gaussian. The orig-
inal image is then divided by the Gaussian fit to produce
an image that is approximately flat in intensity while still
carrying information about fringes and static noise in the
imaging optics. Before any optimization is performed,
the measured images are divided by this computed flat
field to remove fringes associated with the imaging path.
It is worth noting that in the final installation on the full
experiment, only fringes from the imaging path, not any
arising from the DMD or subsequent optics on the path
to the atoms, want to be removed before analysis.

B. Feed forward

After the initial setting of the DMD pattern follwing
eq. (7) and fringe removal, there still exist deviations
from the desired gradient in the measured field. Mitiga-
tion of these adverse effects is accomplished through an
iterative feed forward optimization procedure [21]. The
output from the DMD is imaged onto a detector, and
the difference between the captured and target images is
used to compute an update map that is then applied to
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the DMD. This process repeats until convergence.
The normalized error for each iteration k is computed

as

Ek(i, j) =
nM (i, j)− nT (i, j)

max{nM}
(10)

where nM and nT are the measured and target (contin-
uous) intensity distributions, respectively. This error is
used to compute an updated pixel map through a simple
first order method:

Dk+1(i, j) = Dk(i, j)− ηEk(i, j) (11)

for some step size η. This gives a continuous desired re-
flectance array which is then dithered and displayed on
the DMD. The process is repeated until the current it-
eration performs worse than the previous iteration. Per-
formance is evaluated by using a normalized root mean
square (RMS) error [17]:

εk =

√√√√∑
i,j

(
nM (i, j)

nT (i, j)
− 1

)2

(12)

where the sum is over pixels with values greater than a
threshold value to prevent unwanted fluctuations.

V. DISCUSSION AND OUTLOOK

The methods presented in this work are able to ac-
curately produce a linear intensity gradient with high
fidelity. A combination of fine tuning alignment, charac-
terization of the input beam, and iterative feed forward
optimization are found to be necessary in order to pro-
duce a high quality image. This involves a combination of
techniques reported in earlier works [19–21, 25] for best
results. The process and control code used easily gener-
alize to distributions other than linear intensity gradients
and successfully enable a highly reconfigurable platform
for designer chemical potential landscapes.

Python code, schematics, and documentation relating
to this project is available on the Weld lab Github [26].
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Appendix A: Optics Testing Layout

The optics diagram for the current testing layout is
shown in fig. 4. The output mode from the laser (Sprout
10W 532nm) is resized to fit the AOM aperture, where
the first order is collected. A flip mirror path exists di-
recting the beam into a fiber coupler that is sent to a fiber
collimator output port. This path was used for testing
and comparison but cannot be used at high power. If not
sent into the fiber, two waveplates are used for polariza-
tion control before the beam is sent through a spatial
filter and resized.
For the second lens in this resizing telescope, we tried

focal lengths of both 75mm and 100mm. The 100mm
focal length lens gives a larger image that covers the en-
tire DMD area and extends partially outside the edges.
The beam from the 75mm lens is completely contained
within the DMD array but does not illuminate the whole
region as well as the 100mm lens path. The first order
DMD efficiency was measured at 44.9% using the 75mm
lens and 34.9% using the 100mm lens, where the loss in
power comes from excess light hitting the region around
the DMD. Due to the better illumination uniformity, we
use the 100mm lens for the corresponding better image
size. After reflection from the DMD, the beam is resized
for imaging.
We do not observe any change in DMD power trans-

mittance at different polarizations. The DMD is rotated
at 45◦ so that the mirror’s axis of rotation is perpendicu-
lar to the table surface. The projected image is then also
rotated, so a dovetail prism is used to rotate the image
45◦ in the opposite direction.
Because the incident beam is coming in from the left

side of the DMD, the default on and off states are
switched.

Appendix B: MCP Interrupter

Our DMD is a DLP9000 contained in the LC9000
EVM package driven by the DLPC900 controller
chip. The MCP output from the DLPC900 is labeled
DLP STRB/AF5 in the documentation and schematics
and is accessible at test point TP15 on the LC9000 EVM
board. To control the transmission of the MCP, we re-
moved resistor R66 before TP15, leaving the circuit open.
Two leads were then soldered to either side of the old re-
sistor contacts and connected to a MOSFET (2N7000)
switching circuit. When the MCP should be interrupted,
the MOSFET is pulled high and the pulse is sent to
ground.
We found that using the same 10Ω resistance value as

in the documentation led to undesired small signals still
being transmitted. This is likely due to a combination of
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the on resistance of the MOSFET and contact resistance
through the solder connections and breadboard testing
setup. The small transmission still led to switching of
the mirrors, so a 150Ω resistor between the MCP input
and output was found to be necessary to suppress this
issue. The previous 10Ω resistor is part of an RC filter
before transmission through the ribbon cable connecting
the EVM to the DMD chip, and we have not observed
any negative effects with the added resistance included.

In addition to updating mirror states, the MCP is de-
signed to prevent mirrors from getting stuck in their pre-
vious states. When the MCP is interrupted with our
circuit for a long enough time, there is a risk of the mir-
rors getting stuck. This occurred once during testing
when the MCP was only interrupted for a few seconds.
Various other testing has involved interrupting the MCP
for tens of seconds with no issues. When mirror stick-

ing occurs, leaving the MCP uninterrupted for several
minutes has resolved the issue in the previous recorded
case. To prevent further risk of mirror sticking, we use
a microcontroller-based interlock which routes the MCP
if it has been off for longer than a specified amount of
time.
The interlock and control circuit consists of a TTL in-

put signal to be generated from Cicero when a stable
DMD pattern is needed. The microcontroller (Arduino
Nano) monitors this input and pulls the MOSFET high
sending the MCP to ground whenever the TTL signal
is high. If the interrupting TTL signal has been on for
longer than a specified amount of safe time, the MOS-
FET is pulled low and the MCP is allowed to pass for a
specified time before returning to the input state again.
A full schematic and PCB layout is available on Github
[26].
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