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ABSTRACT

Astronomers interested in directly observing debris disks face the challenge of imaging faint objects

near much brighter objects. High-contrast imaging recovers debris disk, exoplanet, and other faint

signals through a range of instrumental, observational, and post-processing techniques. State-of-the-

art post-processing algorithms provide better visualization and characterization of debris disks by

removing background noise and starlight, or the Point Spread Function (PSF). We utilize the method

of Non-Negative Matrix Factorization (NMF) — with JAX NumPy expediting the process on a GPU —

to perform image post-processing on the debris disks detected in Esposito et al. (2020). Employing

JAX on a GPU resolves some of the more computationally expensive portions of the NMF algorithm,

allowing a more feasible time frame for this process. Paired with data imputation (Ren et al. 2020),

user-defined masks for each disk further supplements NMF. The binary data-imputation masks reduce

the amount of disk light subtracted in post-processing by treating the disk light as missing data and

thus ignoring the disks in PSF construction. The results demonstrate less over- and self-subtraction in

the regions of the disks closest to the respective host stars. Additionally, by integrating these tools in

pyKLIP (Ren et al. 2018), we ensure that all pyKLIP users will have access to the techniques outlined

in this paper, promoting greater access to modern techniques and knowledge of debris disks and their

possible accompanying exoplanets.
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1. INTRODUCTION

Beyond the Solar System, debris disks act as

large–scale versions of our Solar System’s asteroid and

Kuiper belts, similarly composed of dust, gas, and mi-

nor bodies. Collisions break down the bodies within

the disks through a collisional cascade, producing more

dust and gas that, upon reaching blowout size, are no

longer contained in the disk by gravitational forces and

are instead blown out by radiative and wind pressures

(Hughes et al. (2018)). A debris disk’s collisional cas-

cade eventually reaches a steady state with more small

bodies than large ones, producing a dominance of dust

spectra (Pearce (2024)). The host stars of extrasolar

systems heat the dust particles of their respective debris

disks, producing blackbody radiation and leading to an

excess flux from infrared wavelengths. Debris disk dis-

coveries started from the determination of infrared ex-

cess, but advancements in observational techniques and

technologies allow for the direct imaging of debris disks.

In direct imaging, the light scattered by the dust al-

lows for a better morphological study of debris disks,

such as in position angles, geometry, and, importantly

for exoplanet detection, rings (Hughes et al. (2018);

Pearce (2024)). Rings may represent areas where exo-

planets influence the orbits of the smaller bodies within

the disks, creating gaps in the disks where the exoplan-

ets may reside. Exoplanet discovery through debris disk

inference probes different regions of parameter-space for

exoplanets, as seen in Figure 1.

1.1. Direct Imaging

This powerful tool for determining the existence and

location of exoplanets is limited by the precision of the

direct images. Disks and other faint objects require

high-contrast imaging (HCI), a technique in direct imag-

ing that separates a faint source from a bright one —

here, the faint disk from the bright host star — with

the ratio of their luminosities being the contrast ratio

(Follette (2023)). While HCI encompasses a range of

technologies such as adaptive optics, wavefront sensing,
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Figure 1. Reproduced from Pearce (2024), this represents
exoplanets inferred from debris disks versus identified by ex-
oplanet detection methods. The data points represent the
exoplanet’s distance from its host star versus its mass com-
pared to the mass of Jupiter. The planets from the Solar
System are in black. This plot demonstrates the exoplanet
detection biases in parameter space for closer-in, more mas-
sive stars, which are not completely representative of planets
in the Solar System, so that we know that current methods
does not detect all exoplanet types. Debris-inferred exoplan-
ets cover a different region of parameter-space, and which
consists of some planets similar to Solar System planets.

and coronagraphy, the image produced by these meth-

ods necessitates further high contrast image processing

through differential imaging.

1.2. Image Post-Processing

Differential imaging describes the process of remov-

ing a reference image — the distribution of light from

the source star referred to as the point spread function

(PSF) — and noise from a target image. The methods of

differential imaging include reference differential imag-

ing (RDI), angular differential imaging (ADI, Figure 2),

spectral differential imaging (SDI), and more. ADI and

RDI either assemble and combine (RDI) or construct

(ADI) a PSF to subtract from the target image, and

then each images is derotated and combined into a fi-

nal image. SDI involves similar techniques but across

different wavelengths of the image spectra with an in-

tegral field spectrograph image cube. Differential imag-

ing techniques are typically combined with other post-

processing techniques, allowing for more precise images

and analysis.

Figure 2. This figure represents step-by-step Angular Dif-
ferential Imaging, reproduced from Follette (2023). First,
take raw images with the instrument rotator off. Then, con-
struct the PSF by median combining the raw images. Sub-
tract the PSF from the raw data, then de-rotate the sub-
tracted images so that the exoplanet or debris disk is at the
same place in each image. Median combine the subtracted,
derotated data for the final image.

While post-processing the PSFs, individuals utilize

algorithms to construct more descriptive PSFs, most

commonly with the Locally Optimized Combination

of Images (LOCI) algorithm and the Karhunen–Loève

Image Processing (KLIP) algorithm (Soummer et al.

2012) which applies principal component analysis. With

KLIP, images are converted into one-dimensional vectors

and cross-correlated, and the common patterns, or KL

modes, are used to construct the reference images. Both

KLIP and LOCI overfit and self–subtract the data, and

KLIP additionally requires forward modeling, which as-

sumes disk morphology, making these methods non ideal

— especially for disks with irregular morphologies. How-

ever, the method of Non-Negative Matrix Factorization

(NMF) produces promising results in these regards, as

demonstrated by Ren et al. (2018).

1.3. Non-Negative Matrix Factorization

The fundamental procedure of NMF is to decompose

one matrix into a product of two non-negative matri-

ces. In direct imaging, NMF decomposes a reference

matrix with dimensions of the number of references by

the number of pixels per image into a coefficient ma-

trix and component one. The rows of the component

matrix are the NMF components which represent part

of the signal. The iterative approach of NMF starts

with the construction of a component basis, similar to

KLIP but non-negative, which approximates the refer-

ence matrix. NMF iterates over a number of compo-

nents from which to compose the component basis and
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minimizes the Euclidean distances of the matrices which

approximate the reference matrix. It then constructs a

flattened target model with the previously constructed

components and rescales the model due to disk contri-

butions. With the model of the target constructed from

the references, NMF then subtracts the model from the

original image, or the residuals, returning a PSF sub-

tracted target image, so for the purposes of this project

an image of the disk.

1.3.1. Data Imputation

NMF, unlike KLIP, may also be run with data miss-

ing from the input images, which allows for the use of

disk imputation as in Ren et al. (2020). In constructing

the components of the references, over-subtraction oc-

curs where disk light appears in these components and

therefore the PSF model, so that the subtraction of the

PSF model subtracts some of the disk. This is illustrates

in the leftmost column of Figure 3. With data imputa-

tion, binary masks model the disks as zeros, flagging the

light of the disk as missing data and therefore construct-

ing the components for the model without subtracting

out any of the disk.

2. METHODS

We process disks images with the NMF algorithm

through the open-source Python library pyKLIP. By

speeding up the process on a GPU and implementing

data imputation, we improve upon previous methods of

NMF. Finally, we apply this data imputation with JAX

for NMF to Gemini Planet Imager (GPI) data, with this

process available to all pyKLIP users.

2.1. Debris Disk Data

The disks evaluated here come from the Gemini Planet

Imager Exoplanet Survey (GPIES), a survey of stars

with suspected massive planets or debris disks in scat-

tered light. This survey was taken by the Gemini Ob-

servatory from November 2014 to December 2018, and

was previously compiled and processed in Esposito et al.

(2020). We analyze 16 of these disks, with best results

assumed for disks that are edge-on (elliptical inclinations

approaching 90°) and with larger parallactic angle rota-

tion. The disks are listed in Table 1, along with their

on-sky parallactic angles, inclination, and total change

in parallactic angles throughout the data collection.

2.2. NMF with JAX NumPy

Previously, our group had paired NMF with JAX

NumPy (UCSB-Exoplanet-Polarimetry-Lab 2023) based

on code originally developed by Guangtun Ben Zhu and

adapted by Bin Ren. In summary, this code uses JAX

Name Inclination(deg) PA (deg) ∆ PA (deg)

HD 30447 83.0 212.0 125.8

HD 32297 88.4 47.9 19.1

HD 106909 84.6 284.2 7.1, 20.3*

HD 110058 84.0 155.0 25.2

HD 111161 62.1 83.2 38.0

HD 111520 88.0 165.0 28.3

HD 114082 83.3 105.7 12.3

HD 115600 80.0 27.5 24.0

HD 117214 71 179.8 18.5, 19.8*

HD 129590 75.7 121.7 17.9

HD 131835 75.1 61.4 74.2

HD 143675 87.2 113.2 20.5, 94.3*

HD 145560 43.9 41.5 17.5, 36.0*

HD 146897 84.0 113.9 29.5

HD 157587 70.0 127.0 49.9

HD 191089 59.0 70.0 101.3

Table 1. Data from Esposito et al. (2020).
This table gives the name, inclination (in degrees), and par-
allactic angle (in degrees) of the disks, as well as the total
rotation of the datasets, ∆ PA. In some cases, more than one
datasets were used, with the second representing the spectral
auto-reduced datasets.
*Indicates multiple datasets

NumPy’s Just-In-Time (JIT) compiler to run NMF on

a graphics processing unit (GPU), which creates paral-

lelization and therefore faster computing time.

In this project, we integrated this NMF JAX into

pyKLIP, a Python library which performs PSF subtrac-

tion through NMF, KLIP, or other PCA algorithms and

which can be run with ADI, SDI, RDI, or ADI+SDI.

The inclusion of NMF JAX in pyKLIP follows pyK-

LIP’s own handling of NMF, with the same forms of in-

puts and outputs. Additionally, NMF JAX is integrated

such that JAX installation is only required for the run-

ning of NMF JAX and not for users only interested in

KLIP or traditional NMF. NMF JAX becomes available

as a parameter for the input algo in the function klip

dataset, which also dictates the running of the other al-

gorithm types. We also expanded NMF and NMF JAX

in pyKLIP to run with a list of component numbers, as

KLIP does with KL modes. This streamlines the pro-

cess of testing numbers of components, since rather than

computing each component individually a list of compo-

nents produces an image cube of FITS files. A user with

a GPU may now run NMF JAX within pyKLIP through

the same methods of running NMF or KLIP.

2.3. Masking Disks
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Data imputation for the disks requires an assembly of

masks which the user assembles themselves. We model

our disks as simple ellipses, with parameters of image

center, size, disk inclination, rotation, and radius, or

better thought of as the full extent to cover the disk.

The parameters come from Esposito et al. (2020) and are

listed in Table 1, yet we hand-tune the radial parameters

to reduce the appearance of the mask and increase the

disk light.

The disks are rotated onto the on-sky images and

then associated with the dataset as a GPI class variable,

which the user sets alongside running GPIData in pyK-

LIP. In parallelized.py — the notebook within pyKLIP

required to run NMF JAX as well as other algorithms

— the masks are saved to shared memory and processed

alongside the references and target images, so that there

is a target or science mask and a list of reference masks

for each image in the dataset for ADI. Currently, RDI

does not support masking techniques in pyKLIP.

The primary efforts of this project were to demon-

strate the effectiveness of data imputed NMF JAX (DI-

NMF JAX) as well as successfully implement the masks

in NMF JAX without altering the running of any other

pyKLIP processes. While the existing code suppesedly

accepted mask imputs, it improperly handled the masks,

often creating optical appearances of two disks, and pro-

duced size-based errors, which was resolved here. NMF

JAX with data imputation was tested within pyKLIP’s

functions as well as with manual ADI PSF subtraction,

which demonstrated preliminary success with the disk

HD 111520. Moving forward, we apply this method to

the 16 aforementioned disks.

3. RESULTS

Some preliminary successful results of DI-NMF JAX

disks are listed in Figure 3. We compare the disks in

KLIP versus DI-NMF, with the on-sky binary mask in-

cluded for reference. With our testing of all 16 disks, we

found that DI-NMF JAX possibly proved better than

KLIP in some instances. We additionally improved the

NMF code and added further options for image post-

processing in pyKLIP.

3.1. Code Improvement

We have improved NMF in pyKLIP through the im-

plementation of JAX, so that users interested in run-

ning NMF without masks would also see faster computa-

tional times, given access to a GPU. In addition to JAX,

NMF now can be run with a list of component numbers

with which to construct the images, instead of requir-

ing NMF to run multiple times for a certain number

of components. Since NMF uses previous components

Disk KL Modes NMF Components Dataset Length

HD 111520 30 30 31

HD 110058 19 19 20

HD 32297 35 37 38

HD 143675 20 51 52

HD 106909 15 42 43

Table 2. This table gives the number of KL modes and
NMF components used in the results image of Figure 3.

to construct the next one iteratively, this streamlined

code improvement also utilizes the nature of NMF more

efficiently, reducing computation time.

3.2. DI-NMF JAX

The use of data imputation demonstrates less disk

light self-subtraction and less of the over-subtraction

previously noted in KLIP. The negative regions around

the disk, evident with KLIP, are significantly reduced

with DI-NMF JAX, seen in the right column of Fig-

ure 3. For successful implementations of DI-NMF JAX,

like those examples in Figure 3, more disk light is ap-

parent closer to the host star, and possible additional

features such as the back side of the disk become more

apparent — possibly in HD 111520. An area to improve

is the residual PSF light towards the center, though may

be an additional consequence of the positivity of NMF

versus the negative weights that can be applied in KLIP.

However, weighted averages discussed in section 4 may

provide better results in this area.

In general, DI-NMF JAX tends to catch the light in

the over-subtracted regions of KLIP, refining our imag-

ing of debris disk morphology. In HD 111520, the inner

regions of the disk appear more strongly, and the DI-

NMF result may hint towards more structure to be fur-

ther investigated. HD 110058 appears brighter in the in-

ner regions, despite leftover PSF residuals. In HD 32297,

the regions of self-subtraction towards the edges are re-

duced, and the regions closest to the star are stronger.

For HD 106906, we see the strongest promise for DI-

NMF JAX. The farthest regions of the disk are more

prominent in regions that were previously subtracted.

The presence of this feature may suggest that the disk is

more inclined that previously considered. Some of these

results were expected, since the purpose of the masks is

to limit the disk contribution to the PSF. The number of

KL modes and NMF components for Figure 3 are listed

in Table 2.

The least successful cases, as previously mentioned,

were the face-on disks with less rotation. Results demon-

strated strong presence of the mask in the final results.
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Figure 3. KLIP vs Masks vs Data Imputed NMF JAX for 5 out of 16 Disks.
The pixel value of the images are in counts per pixel, and the masks are binary, with the disk being 0 and the background being
1. The spatial coordinates are 3.6E-7 degrees per coordinate.
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For those cases, KLIP is still the better choice over DI-

NMF JAX. For the successful cases, the edge-on and

highly rotated disks, DI-NMF JAX proves to be a use-

ful post-processing algorithm.

4. FUTURE WORK

This procedure requires some trial and error for mask

placement, so a larger range of masks that vary in size

could be applied to these disks. Also, to eliminate some

of the residual PSF starlight from the images, one could

apply weights to the outputs based on the standard de-

viation of the output, and creating a weighted average

image that is inversely proportional to that standard de-

viation. One could also use the signal-to-noise ratio as

a weight, where the average value in the disk annulus

is divided by the standard deviation of the rest of the

image. While these are all direct ways to improve the

algorithm, future work in automating this process would

also make this algorithm more accessible and versatile.

5. CONCLUSION

Direct imaging of debris disks and other spread out

sources produce problems in the differential imaging pro-

cess, whereby the disk may appear in the same pixel(s)

in several frames, causing some of the disk to be added

to the point spread function of the starlight and noise.

When the disk light gets incorporated into the PSF,

parts of the disk are subtracted out during PSF sub-

traction. By implementing masks of the disks in PSF

construction, disk light is ignored and thus left in the fi-

nal image. The mask data imputation method is a spe-

cial feature of Non-Negative Matrix Factorization, an

algorithm for approximating a reference image to sub-

tract out of the data so that the final image shows the

target, in this case a debris disk.

NMF JAX with data imputation improves upon self-

subtraction in these disks and provides an improvement

in resolving disk features in some cases, especially for

edge-on disks with significant rotation. Overall, we suc-

cessfully implement data imputation for NMF with JAX

in the Python library pyKLIP, and we provide a tuto-

rial for this procedure. The data imputation consists of

creating a binary mask which assigns zeros to the re-

gions where the disk resides and ones where it does not,

so the light from the disk does not contribute to the

PSF construction and subtraction. We minimize over-

and self-subtraction due to the positive nature of NMF,

and use the data imputation to compensate for any disk

scattered light lost in the NMF method.

Some of the most successful disks, as seen in the right

column of Figure 3, provide more disk light than their

KLIP counterparts. This result demonstrates promise

for DI-NMF JAX, especially in determining the mor-

phology of the disks, as we can see more of the disk.

While more work must be done to optimize the masks

chosen per disk and reduce leftover PSF residuals, DI-

NMF JAX improves upon certain established prob-

lems in KLIP and may provide a better post-processing

method for astrophysical studies of debris disks.
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