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It has been recently experimentally observed that rhombehedral (ABC) trilayer graphene, exhibits
ferromagnetism[1] and superconductivity[2] at certain applied electric field strengths and carrier
densities. It is unknown, however, when and why exactly Bernal (AB) stacked bilayer graphene
becomes ferromagnetic but not superconductive when applying electric fields and varying carrier
densities. This is strange because AB bilayer graphene and ABC trilayer graphene have similar band
structure and density of states, meaning that their electronic properties should be similar as well.
We numerically calculate the regions in which AB stacked bilayer graphene becomes ferromagnetic
and compare the results to experimental observations. AB bilayer graphene is much more stable
and easier to produce than ABC trilayer graphene, and if observed to be superconducting, would
be a more suitable material for use. These results imply that transistor like devices using graphene
can be designed to easily switch between being an insulator, superconductor, or a ferromagnet just
by changing the applied gate voltage to the device.

I. INTRODUCTION

A. Graphene

Graphene is a two dimensional material made of car-
bon atoms arranged in a honeycomb lattice as shown
below in Fig. 1. It is characterized by two lattice vec-
tors, a1 = a

2 (3,
√

3) and a2 = a
2 (3,−

√
3) where a = 2.46

Å is the lattice constant. The atoms of graphene are
given labels of A and B atoms. The nearest neighbor vec-
tors are given as δ1 = a
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)
, δ2 = d

2
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3
)
, and

δ3 = −d(1, 0). The Brillouin zone of graphene also turns
out to be hexagonal, with special points being the cor-
ners of the Brillouin zone, labelled as K = 2π
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and K ′ = 2π
3
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)
points in k-space. Graphene

has many interesting properties, including being a rather
good electrical and thermal conductor. It is also one of
the lightest, strongest, and most flexible materials dis-
covered. Graphene can be manipulated into other in-
teresting systems, like carbon nanotubes by rolling up a
graphene monolayer, or by stacking it upon itself enough
times for it to become the three dimensional material,
graphite.

In AB stacked bilayer graphene, a second layer of
graphene is situated directly above the first and shifted
until its B atoms are in the center of the hexagons of
the first layer. The first two layers of ABC stacked tri-
layer graphene are identical to those of AB stacked bi-
layer graphene. However, the third layer has shifted over
another set of atoms so that its B atoms are in the cen-
ter of the hexagons of the second layer. It turns out that
among the most common variations of bilayer graphene,

FIG. 1: Left: Monolayer graphene structure with lattice vec-
tors and nearest neighbor vectors. Right: First Brillouin zone
of Graphene with labelled K and K′ points. This comes from
Figure 2 from [3].

AA and AB, that AB stacked bilayer graphene is much
more stable. AA stacked bilayer graphene has the second
layer’s atom perfectly align with the first layer’s atom,
which causes the carbon atoms to feel a stronger repul-
sive force. It has also been experimentally observed that
ABC trilayer graphene is quite unstable[4]. If found to
be superconducting, the stability of AB bilayer graphene
makes it a much better candidate for future physical ap-
plications.

B. Tight binding model

We assume a tight-binding model for the electrons in
graphene where the electrons can hop between nearest
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FIG. 2: structure of AB bilayer graphene

FIG. 3: structure of ABC trilayer graphene

neighbor atoms, and the Hamiltonian can be written as

Ht.b = −γ0

 ∑
〈i,j〉,m

â†m,ib̂m,j + b̂†m,iâm,j

 (1)

− γ1

∑
j

â†1,j â2,j + â†2,j â1,j


− γ3

∑
〈i,j〉

b̂†1,ib̂2,j + b̂†2,j b̂1,i


− γ4

∑
〈i,j〉

â†1,ib̂2,j + â†2,ib̂1,j + b̂†1,j â2,i + b̂†2,j â1,i


where the operators âm,i(â

†
m,i) refers to annihilation (cre-

ation) of an electron at site i on layerm, and similarly for
b̂m,i. The γi are the different energies required for hop-
ping, which are γ0 = 3160 meV, γ1 = 381 meV, γ3 = 380

meV, and γ4 = −140 meV[5]. There are some additional
terms that can be added, such as an applied interlayer
potential between the two layers or additional energies
coming from dimer sites. In solving for a usable form of

the Hamiltonian, one obtains a Hamiltonian that can be
written in matrix form as

Hbi,k =


−∆/2 −γ0f(k) −γ4f(k) −γ3f(k)∗

−γ0f(k)∗ −∆/2 + ∆′ γ1 −γ4f(k)

−γ4f(k)∗ γ1 ∆/2 + ∆′ −γ0f(k)

−γ3f(k) −γ4f(k)∗ −γ0f(k)∗ ∆/2


(2)

where f(k) = e−ikxa
[
1 + 2ei3kxa/2 cos

(√
3

2 kya
)]

and
the used basis is [Ψa,1,Ψb,1,Ψa,2,Ψb,2.] The ∆ parameter
is the strength of an interlayer potential, usually in the
range of tens of meV, and ∆′ is a term resulting from
energy at dimer sites, where ∆′ = 22 meV[5]. However,
it becomes possible to Taylor expand the Hamiltonian
around the K and K ′ points, into the form

H′k =


−∆/2 v0π

† v4π
† v3π

v0π −∆/2 + ∆′ γ1 v4π
†

v4π γ1 ∆/2 + ∆′ v0π
†

v3π
† v4π v0π ∆/2

 , (3)

where π = ξkx + iky and ξ = +1 at the K point and
ξ = −1 at the K ′ point. The new coefficients vi are what
are known as the Fermi velocities, vi =

√
3aγi
2~ .

C. Ferromagnetism

We explain the origin of ferromagnetism in materi-
als. Ferromagnetism is the result the Coulomb inter-
action and quantum mechanics. For the charge carri-
ers in materials, electrons and holes are fermions. As
a result, the many body wave function for the system
must be antisymmetric under the exchange operator, i.e.,
P̂ (ΨM.B) = − (ΨM.B.) . For a simple system of 2 elec-
trons, we consider their spatial wavefunction and their
spin wavefunction. Supposing that the electrons are in
states ψ1 and ψ2, then their wave function is either of the
form

ΨC(~x1, ~x2) =
1√
2

(ψ1(~x1)ψ2( ~x2) + ψ2(~x1)ψ1( ~x2)) · ΦA.S.

or

ΨF(~x1, ~x2) =
1√
2

(ψ1(~x1)ψ2( ~x2)− ψ2(~x1)ψ1( ~x2)) · ΦS,

where here ΦA.S is an antisymmetric spin wavefunc-
tion and ΦS is a symmetric spin wavefunction. In the
case of an antisymmetric wavefunction, we have that
ΦA.S = 1√

2
(| ↑↓〉 − | ↓↑〉) , meaning that the electrons

must have opposite spins. In the case of a symmetric
wavefunction, the symmetric spin wavefunction is either
ΦS = | ↑↑〉, | ↓↓〉, or 1√

2
(| ↑↓〉+ | ↓↑〉) . We note here that

the two electrons can share the same spin if their spin
wavefunction is symmetric.
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In the case of ΨC, it turns out that the electrons are on
average closer together. If we account for the Coulomb
interaction, classical electromagnetism states that the
potential energy between two charges is proportional to
the square of the inverse distance between them. Thus,
electrons with a symmetric spatial wavefunction are on
average closer together, causing the energy resulting from
the Coulomb energy to be higher. If the spatial wave-
function is antisymmetric, the electrons are on average
farther apart, causing the Coulomb energy to be lower.

Then, ferromagnetism occurs when the energy due to
Coulomb interaction becomes more significant than the
system’s kinetic energy. In the case that the Coulomb
energy must be minimized due to it being larger than
the kinetic energy, the system’s spatial wavefunction is
antisymmetric so as to maximize the distance between
electrons. Due to the spatial wavefunction being anti-
symmetric, the spin wavefunction has to be symmetric,
allowing for the system to have all its spins align, result-
ing in ferromagnetism in the system.

II. CALCULATIONS

A. Band structure

The band structure of the bilayer graphene system can
be computed by calculating the eigenvalues of Hk or H′k
for various points in k-space. In particular, we calculate
the band structure of the system along the line ky =
1√
3
kx, which gives the band structure along the K ′−Γ−

K −M points. We are only interested in the system at
low energies, which happens to be near the K and K ′

points. This gives an electron the property of belonging
to one of four flavors, depending on whether it is up or
down spin and whether it is in the K or K’ valley.

Increasing the strength of the interlayer potential in-
duces a larger bandgap in the inner bands of the band
structure.

B. Carrier Density and Density of states

Using the previously calculated band structure, we can
then compute the density of states by first calculating the
carrier density via

n(µ) =
1

A · (2π)2

∫ ∫
1

exp
(
ε(~k)−µ
kBT

)
+ 1

dkxdky, (4)

where A is the area of a unit cell of the graphene lattice,
ε is a band structure energy at some point in k space,
and µ is the Fermi energy we can attempt to vary. This

FIG. 4: Bilayer graphene band structure at interlayer poten-
tial ∆ = 100 meV

comes from standard statistical mechanics as the aver-
age density is given by 〈n〉 = 1

A

∑
~k

1

exp
(
ε(~k)−µ
kBT

)
+1

, where

the sum over ~k should be done over the whole Brillouin
zone. We generally take the temperature to be T = 0 K,
which just causes 1

exp
(
ε(~k)−µ
kBT

)
+1

= 1 when ε(~k) < µ and

1

exp
(
ε(~k)−µ
kBT

)
+1

= 0 when ε(~k) > µ. Given the density, we

can then calculate the density of states via

ρ(µ) =
dn

dµ
. (5)

With the density of states calculation, we obtain the
plot in Figure 5. As seen in the density of states plot,
ρ(µ) = 0 for −50 meV ≤ µ ≤ meV , which was caused
by the applied interlayer potential. This is also evident
in the band structure plot, making it not possible for any
carriers to have an energy between -50 meV and 50 meV.

C. Stoner ferromagnetism

The tight binding model does not account for electron-
electron interactions within graphene. To account for
this, we use a Stoner model that gives the grand potential
of the system per area as

Φ

A
=
∑
α

E0(nα) + Vint + µ
∑
α

nα (6)
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FIG. 5: Bilayer graphene density of states at interlayer po-
tential ∆ = 100 meV

where

Vint =
UAu.c

2

∑
α6=β

n(α)nβ+JAu.c(n1−n3)(n2−n4). (7)

We note that nα =
∫ µ

0
ρ(ε)dε is the electron density for

a particular flavor, α. Then E0(µα) =
∫ µα

0
ερ(ε)dε is

the kinetic energy of a flavor and µ is some fixed chem-
ical potential. The flavors are labelled accordingly by
1 = {K, ↑}, 2 = {K ′, ↑}, 3 = {K, ↓}, and 4 = {K ′, ↓}.
The term Vint represents an interaction energy between
different flavors, with U being an interaction strength
between different flavors, J being an interaction specific
to total polarization differences, and Au.c. being the area
of a unit cell of bilayer graphene. We have implicitly
assumed that electrons of different flavors all interact
with each other equally. According to the Stoner cri-
terion for ferromagnetism, ferromagnetism occurs when-
ever Uρ(ε) > 1. Thus, U is essentially the strength
of the Coulomb interaction between electrons of differ-
ent flavors, with ferromagnetism occuring whenever the
Coulomb energy Vint becomes dominant over the kinetic
energy. As U is increased, more ferromagnetic regions
should show up. The J parameter is included for the
fact that the system seems to polarize the spins a lot
more strongly than the valleys. We note that J really
only affects the 2x phase. Larger J causes the 2x phase
to be supressed, while more negative J cause the 2x phase
to be more common.

In practice, we compute our grand potential as a

FIG. 6: Simulated bilayer graphene phase diagram at fixed U

= 30 eV. The color map is given as {blue, red, yellow, green
= 1, 2, 3, 4}.

function of the interlayer potential ∆, and carrier den-
sity, n. Thus, it becomes necessary to compute the
kinetic energy as a function of carrier density instead,
E0(nα) =

∫ nα
0

ε(n)dn.

While U and J are possible to vary, they are in prac-
tice rather difficult to vary experimentally. It is instead
much easier to vary carrier density and the interlayer po-
tential. Thus, we plot Φ

A as a color plot as a function of
(nT ,∆), where nT = n1 + n2 + n3 + n4 is the total elec-
tron density giving plots similar to that in Figure 6. The
colors represents how many flavors are being occupied,
with the blue and red regions being the ferromagnetic
regions, yellow being less ferromagnetic, and green being
essentially paramagnetic.

III. DISCUSSION

A. Experimental Observations

Professor Young’s group has done some experimental
work and the data obtained is given in Figure 8. They
measured the resistance of AB bilayer graphene as a func-
tion of the carrier density and the applied electric field.
Resistance can be mapped to the minimum energy state
of the system, which is why the resistance plot can give
a phase diagram of the system. Within the data, there
are some regions of specific resistances that are believed
to be where the AB bilayer graphene system occupies nx
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FIG. 7: Another phase diagram, but with J = −5 eV. The
2x phase has essentially suppressed the 3x phase.

FIG. 8: Resistance of AB bilayer graphene as a function of
electric field and carrier density

flavors, where n is the number of flavors being occupied.
The most ferromagnetic regions are those labelled by the
2x and 1x regions.

B. Conclusion

We see that our simulated results and the experimental
data do seem to corroborate each other. Specifically, our
calculations also include a butterfly wing 1x region as
well. Our calculations also captures the behavior of the

FIG. 9: Labelled phases in experimental data for positive
electric field and negative carrier density

2x butterfly wing region fairly well. The results of both
experiment and computation indicate that AB bilayer
graphene becomes ferromagnetic in the 1x and 2x regions
along some defined curve in the electric field and carrier
density plane. Changing the simulation parameters U
and J leads to more accurate phase diagrams compared
to experiment, where it seems the likelihood of polarizing
the spins is rather quite strong, with

∣∣U
J

∣∣ ≈ 1
6 .

C. Further work

Our simulation currently still has quite a bit of noise,
with a lot of phase transitions between the different nx
regions. This is not really observed experimentally and
is likely due to the energies between various phases be-
ing very close together near the boundaries. In order
to resolve this, it becomes necessary to make the energy
calculations more accurate. It is difficult to increase the
accuracy of our simulation without also greatly increas-
ing its run time, whether through increasing the number
of k points sampled to calculate the density of states, or
by making the integration more accurate.

Another thing that can be investigated is how the
Fermi surface changes at the tip of the butterfly wing.
The Fermi surface is the surface separating occupied and
unoccupied energy states of the system, and understand-
ing more about this can give greater intuition into under-
standing why phase transitions occur where they do. A
more sophisticated method to account for the Coulomb
interaction than the Stoner model is to perform a Hartree
- Fock analysis. Using Hbi,k in (2), we add to it a Hamil-
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tonian that accounts for the Coulomb interaction[6],

HC = (8)
1

2

∑
α,β,i,j

∫
d2rd2r′U (|r− r′|)ψ†iα(r)ψ†jβ(r′)ψjβ(r′)ψiα(r)

where α, β = 1, . . . , 4 refers to the possible flavors, i, j =

1, . . . , 4 run over the two bilayer sublattice and layers,
ψ†jα(r) creates an electron at r with the appropriate j
location and α flavor. The interaction term is

U(r) =

∫
d2q

(2π)2
eiq·r · 2πz2 tanh(qd)

εq
, (9)

where z is the electron charge, and d and ε are experi-
mental terms, with d being the distance between metallic
gates and the bilayer system and ε being some dielectric
constant.
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V. APPENDIX

Python code

In general, the used Hamiltonians are too complicated
to analytically obtain useful expressions for electron den-
sity or density of states. Thus, it becomes necessary to
numerically calculate the desired quantities.

import numpy as np
import matp lo t l i b . pyplot as p l t
import math
from matp lo t l i b . pyplot import f i g u r e
from numpy import matrix
from numpy import l i n a l g as LA
from math import log , exp , cos
from math import e
from sc ipy . i n t e r p o l a t e import inte rp1d
import pandas as pd
import pandas as pd
import numba
from numba import j i t

This imports all of the libraries we will use. Any code
with "#haoxin" is modified from Haoxin Zhou’s code
on ABC trilayer graphene, written originally in Matlab.
This first function computes the eigenvalues of the Hamil-
tonian in Eq. 3 at every point in the specified grid in the
kx − ky plane.

@j i t ( nopython=True)#haoxin
de f d i s p e r s i o n (numx , numy , kxmin , kxmax ,
kymin , kymax , d1 , k s i ) :

g0 = 3160
g1 = 381
g3 = 380
g4 = −140
d2 = 22

h0 = np . array ( [ [ −d1/2 , 0 , 0 , 0 ] ,
[ 0 , −d1/2 + d2 , g1 , 0 ] ,
[ 0 , 0 , d1/2 + d2 , 0 ] ,
[ 0 , 0 , 0 , d1 / 2 ] ] )

h0 = h0+np . t ranspose ( h0 )

hx = (3∗∗0 .5 )/2∗ k s i ∗np . array ( [
[ 0 , g0 ,−g4 , g3 ] ,
[ 0 , 0 ,0 ,−g4 ] ,
[ 0 , 0 , 0 , g0 ] ,
[ 0 , 0 , 0 , 0 ] ] )
hx = hx+np . t ranspose (hx )

hy = (3∗∗0 .5 )/2∗1 j ∗np . array ( [
[0 ,−g0 , g4 ,−g3 ] ,
[ 0 , 0 ,0 , g4 ] ,
[0 ,0 ,0 , − g0 ] ,
[ 0 , 0 , 0 , 0 ] ] )
hy = hy+np . conjugate (np . t ranspose (hy ) )

kkx = np . l i n s p a c e ( kxmin , kxmax , numx)
kky = np . l i n s p a c e ( kymin , kymax , numy)

r e s u l t s = np . z e r o s ( ( 4 , numx , numy) )
f o r i i in range (0 ,numx ) :

f o r j j in range (0 ,numy ) :
hh = h0+kkx [ i i ] ∗ hx+kky [ j j ] ∗ hy
e i g enva lu e s
= np . s o r t (np . r e a l (LA. e i g (hh ) [ 0 ] ) )
f o r i in range ( 0 , 4 ) :

r e s u l t s [ i , i i , j j ]
= e i g enva lu e s [ i ]

r e turn r e s u l t s

The next code computes the n(µ) curve mentioned ear-
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lier.

@ j i t ( nopython=True , p a r a l l e l = True)#haoxin
de f f e rm id i r a c (E, mu, T) :

kb = 8.617333262145 e−2
return np . d i v id e (1 , np . exp (

np . d i v id e ( (E−mu) , ( kb∗T)))+1)

@j i t ( nopython=True , p a r a l l e l = True)#haoxin
de f dens i ty (kx_mesh , ky_mesh , EE0 , mu, T) :

dkx = kx_mesh [ 0 ] [ 1 ] −kx_mesh [ 0 ] [ 0 ]
dky = ky_mesh [ 1 ] [ 0 ] −ky_mesh [ 0 ] [ 0 ]
ne_mesh = f e rm id i r a c (EE0 ,mu,T)
return (np . sum(ne_mesh)

∗dkx∗dky /((2∗np . p i ) ∗∗2 ) )

#haoxin
de f n_list_gen (T, mu_range ,num_mu, numx ,

numy , kx_range , ky_range , d1 , k s i ) :
uu = d1
kkx = np . l i n s p a c e ( kx_range [ 0 ] ,
kx_range [ 1 ] , numx)
kky = np . l i n s p a c e ( ky_range [ 0 ] ,
ky_range [ 1 ] , numy)
[ kx_mesh , ky_mesh ] = np . meshgrid ( kkx , kky )
dkx = kx_mesh [ 0 ] [ 1 ] −kx_mesh [ 0 ] [ 0 ]
dky = ky_mesh [ 1 ] [ 0 ] −ky_mesh [ 0 ] [ 0 ]

mmu = np . l i n s p a c e (mu_range [ 0 ] ,
mu_range [ 1 ] , num_mu)
nne = np . z e ro s (num_mu)

EE = d i s p e r s i o n (numx , numy , kx_range [ 0 ] ,
kx_range [ 1 ] , ky_range [ 0 ] , ky_range [ 1 ] , uu ,
k s i )

eev = EE [ 1 , : , : ]
eec = EE [ 2 , : , : ]

f o r i i in range (0 ,num_mu) :
nne [ i i ] = dens i ty (

kx_mesh , ky_mesh , eec , mmu[ i i ] ,T)
+ dens i ty (
kx_mesh , ky_mesh , eev , mmu[ i i ] , T)

dmu = (mmu[1] −mmu[ 0 ] ) / 1 e3
dos = np . d i f f ( nne )/dmu∗4 .0
do s_ l i s t = l i s t ( dos )

cnp = in t ( round (np .mean(
do s_ l i s t . index (min ( do s_ l i s t ) ) ) ) )

nne0 = nne [ cnp ]

re turn ( nne−nne0 ) / ( ( 2 . 4 6 e −10)∗∗2)∗(1 e−4)

Using the n_list_gen function, we generate many µ(n)

curves at various ∆.We can then use our grand potential
function, which gives us the number of flavors that are
occupied in order to achieve the minimum energy at that
particular ∆ and n.

@ j i t ( nopython=True )
de f minimum_system_densities (E, n_l i s t ,
n , U, J ) :

n_zero = f ind_neares t ( n_l i s t , 0)

i f n >=0:
n_l i s t = n_l i s t [ n_zero : ]
E = E[ n_zero : ]

e l s e :
n_l i s t = n_l i s t [ : n_zero+1]
E = E [ : n_zero+1]

n_up_limit_1 = f ind_neares t ( n_l i s t , n )
n_up_limit_2 = f ind_neares t ( n_l i s t , n/2)
n_up_limit_3 = f ind_neares t ( n_l i s t , n/3)
n_up_limit_4 = f ind_neares t ( n_l i s t , n/4)

A = (3∗∗0 . 5 ) ∗ ( ( 2 . 4 6 e −8)∗∗2)/2

i f n>=0:
E_1 = E [ : n_up_limit_1 ]
n_list_1 = n_l i s t [ : n_up_limit_1 ]
E_2 = E [ : n_up_limit_2 ]
n_list_2 = n_l i s t [ : n_up_limit_2 ]
E_3 = E [ : n_up_limit_3 ]
n_list_3 = n_l i s t [ : n_up_limit_3 ]
E_4 = E [ : n_up_limit_4 ]
n_list_4 = n_l i s t [ : n_up_limit_4 ]

E_1f = np . t rapz (E_1, n_list_1 )

E_2f = np . t rapz (E_2, n_list_2 )
E_2f = 2∗E_2f + U∗A∗(n∗∗2)/8

+ J∗A∗(n∗∗2)/4

E_3f = np . t rapz (E_3, n_list_3 )
E_3f = 3∗E_3f + 3∗U∗A∗(n∗∗2)/18

E_4f = np . t rapz (E_4, n_list_4 )
E_4f = 4∗E_4f + 6∗U∗A∗(n∗∗2)/32

e l s e :
E_1 = E[ n_up_limit_1 : ]
n_list_1 = n_l i s t [ n_up_limit_1 : ]
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E_2 = E[ n_up_limit_2 : ]
n_list_2 = n_l i s t [ n_up_limit_2 : ]
E_3 = E[ n_up_limit_3 : ]
n_list_3 = n_l i s t [ n_up_limit_3 : ]
E_4 = E[ n_up_limit_4 : ]
n_list_4 = n_l i s t [ n_up_limit_4 : ]

E_1f = np . t rapz (E_1, n_list_1 )
E_1f = (−1)∗E_1f

E_2f = np . t rapz (E_2, n_list_2 )
E_2f = −2∗E_2f + U∗A∗(n∗∗2)/8

+ J∗A∗(n∗∗2)/4

E_3f = np . t rapz (E_3, n_list_3 )
E_3f = −3∗E_3f + 3∗U∗A∗(n∗∗2)/18

E_4f = np . t rapz (E_4, n_list_4 )
E_4f = −4∗E_4f + 6∗U∗A∗(n∗∗2)/32

ene rgy_l i s t = [ E_1f , E_2f , E_3f , E_4f ]
minimum = min( ene rgy_l i s t )
i f minimum == E_1f :

r e s u l t = 1
e l i f minimum == E_2f :

r e s u l t = 2
e l i f minimum == E_3f :

r e s u l t = 3
e l s e :

r e s u l t = 4

return r e s u l t

An example of the code to generate a phase diagram
is given below:

from matp lo t l i b . c o l o r s
import ListedColormap

co l_dic t ={1:" blue " ,
2 : " red " ,
3 : " orange " ,
4 : " green "}

cm = ListedColormap ( [ co l_dic t [ x ]
f o r x in co l_dic t . keys ( ) ] )

n_list_5 = np . l i n s p a c e (−1e+12, 1e+12, 800)
meV_list = np . l i n s p a c e ( −120 ,120 ,150)
N,meV = np . meshgrid ( n_list_3 , meV_list )

T = 0 .0
mu_range = [−200 , 200 ]
num_mu = 4000

k s i = −1
num_ne_list = 600
kx_range = [ −0.5 , 0 . 5 ]
ky_range = [ −0.5 , 0 . 5 ]
numx = 3000
numy = 3000
mmu = np . l i n s p a c e (mu_range [ 0 ] ,
mu_range [ 1 ] , num_mu)
l i s t_ o f_ l i s t s = [ ]
new_mmu = np . l i n s p a c e (mu_range [ 0 ] ,
mu_range [ 1 ] , 64000)
f o r i in range ( 0 , 7 5 ) :

start_time = time . time ( )
n_list_3 = np . l i n s p a c e (−1e+12, 1e+12, 800)
l i s t_va l u e s = [ ]
n_l i s t = n_list_gen (T, mu_range ,
num_mu, numx , numy ,
kx_range , ky_range , meV_list [ i ] , k s i )
interpo lated_n = interp1d (mmu, n_l i s t ,
kind=’ cubic ’ )
new_n_list = interpo lated_n (new_mmu)
new_n_list = l i s t ( new_n_list )
f o r j in range ( 0 , 8 0 0 ) :

l i s t_va l u e s . append (
minimum_system_densities (new_mmu,
new_n_list , n_list_3 [ j ] ,
30000 ,−5000 ) )

l i s t_ o f_ l i s t s . append ( l i s t_va l u e s )
z_2d = np . array ( l i s t_ o f_ l i s t s )

f ig_2 = p l t . f i g u r e ( f i g s i z e =(20 ,15))
p l t . imshow (z_2d , extent=(n_list_3 [ 0 ] ,
n_list_3 [ −1] , meV_list [ −1] , meV_list [ 0 ] ) ,
i n t e r p o l a t i o n =’ nearest ’ ,
cmap=cm, aspect=’auto ’ )
p l t . x l ab e l ( ’ $n$ (1/cm^2) ’ , f o n t s i z e = 20)
p l t . y l ab e l ( r ’ $\Delta$ (meV) ’ , f o n t s i z e = 20)
p l t . t i t l e ( ’ B i l aye r graphene phase diagram f o r
$U = 30$ , $ J = −5$ eV ’ , f o n t s i z e = 20 )
p l t . x t i c k s ( f o n t s i z e = 20 )
p l t . y t i c k s ( f o n t s i z e = 20)
p l t . gca ( ) . inver t_yax i s ( )
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