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The Gemini South Telescope in Chile, with its Gemini Planet Imager (GPI) instrument, is a
pioneering facility in the field of “direct imaging”— its integral field polarimeter can produce images
of protoplanetary and debris disks with light from the host star almost completely suppressed. To
do this, an array of lenslets divides the image into several thousand “spots,” which must then be
sorted by polarization and converted into single pixels one-by-one. Some simplifying assumptions
make this process more tractable, and published results indicate that these assumptions do not
compromise the data; however, this does not mean they cannot be improved upon. In this paper,
we test the assumption that each spot’s point-spread function (PSF) on the detector is a two-
dimensional Gaussian, and suggest alternatives to traditional aperture photometry in an attempt
to improve the signal-to-noise ratio (SNR) of extracted images. We find that sampling sections of
a raw image to empirically model spots replicates individual spot features substantially better than
functional-form profiles, which could be useful when implementing a weighting scheme during flux
extraction.

I. INTRODUCTION
A. Polarimetry

A number of devices make the Gemini Planet Imager
(GPI) one of the most powerful direct imaging instru-
ments in the world, not the least of which is its adaptive T (eesow | SR
optics subsystem, allowing it to rival the angular resolu-
tion of the largest space telescopes. However, the focus
of this paper is the integral field polarimeter (IFP) (see
Figure 1). GPI’s IFP first passes incoming light through
a lenslet array, splitting the image into ~ 36000 opti-
cal paths. Each of these then passes through a polar-
izing beamsplitter, separating the light from that point
on the image into its two orthogonally polarized compo-
nents. These pairs of spots then fall onto the detector;
the data reduction pipeline (DRP) is responsible for ex-
tracting spots of each polarization into their own images
(see Section I1B).

The two resulting images look very similar, in that
they are dominated by light from the central star. In
fact, because starlight should be unpolarized, the two
images of the star should be almost identical, even given
the optical abberations of the telescope and atmosphere,
since both images were taken simultaneously. However,
if a disk of dust particles is orbiting the star, it will pref-
erentially polarize any light it reflects. While this disk
will be much fainter than the star it orbits, each point
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FIG. 1. A flowchart of light’s path through the Gemini Planet
Imager’s integral field polarimeter, and the resulting data’s
path through the data reduction pipeline. Adapted from [1].

an incredibly powerful tool for extracting images of disks
with minimal systematic error.

on the disk will not be the same brightness in both im-
ages. This means that if we subtract one of these images
from the other, the star should disappear almost com-
pletely, while any disk surrounding it should be clearly
visible. This method of starlight subtraction does not
depend on angular or spectral diversity, and is therefore

B. GPI Pipeline

To turn the raw image of overlapping polarization
states into separate pictures, we must first identify the
positions and polarizations of each spot on the raw im-
age. This is done through iterative solving in the GPI



data reduction pipeline (DRP). Starting from a set of
initial guesses for each spot’s coordinates, the pipeline
fits a two-dimensional Gaussian profile to find the true,
sub-pixel center of each point-spread function (PSF). The
pipeline then aligns a pre-saved reference grid to the cen-
ters of those spots, which tells it each spot’s polarization.
It then performs a modified version of aperture photom-
etry on each spot. In regular aperture photometry, one
obtains a star’s “flux” by defining an area around its
center in which the pixels deviate significantly from the
background, then subtracting out that background and
summing the remaining pixel values in that area. While
this has worked very well for measuring the brightnesses
of stars in astronomical images, the principle does not
quite apply in this case: the polarimetric spots do not
represent a physical point source, but all the light that
falls onto an individual lenslet, including sources of noise
like sky background. It then makes sense to account for
the characteristic shape of these spots by weighting each
pixel’s value in the sum; pixels further from the center of
a spot will be dimmer, and thus more affected by detec-
tor noise. If we weight these pixels less than those at the
centers of the spots, the noise in these areas (very little of
which comes from the sky itself) will have less influence
on the final image, and should improve signal-to-noise
ratios (SNRs) in reduced GPI data.

An elegantly simple solution might use the Gaussian fit
parameters we obtained when fitting for the spot center
positions, normalizing those profiles to create a tailored
weighting function for each spot. However, extracting
images this way was actually found to decrease the SNR.
The Gaussian weighting profile that maximized SNR was
three times wider than GPI’s best fit; this indicated that
a 2-dimensional Gaussian may not be the best weighting
function for GPI’s spots. In this paper we set out to
determine the precise shape of these spots, with the hope
that this would point to an optimal weighting function
for the PSFs.

II. METHODS

To test the efficacy of each model, we first used the
GPI DRP to obtain the center positions for the spots in
our raw image. We then generated multiple artificial GPI
images, where each one assumed the spot shapes followed
a different distribution.

A. Generating Calibration File

A pre-compiled version of the GPI DRP is publicly
available online!, precluding the need for an IDL li-
cense in this work; this is the software we used to create

1 http://docs.planetimager.org/pipeline/installation/
install_compiled.htmlinstalling-from-compiled

our spot positions calibration file. We sourced our raw
data files from the polarimetry data reduction tutorial?,
specifically the “lamp” files therein. While the lenslet
array makes it impractical to obtain true flat-field cali-
bration images for GPI, these lamp files offer something
analogous, ensuring that most spots are of approximately
the same brightness ([2]). We ran the recipe “Calibrate
Polarization Spot Locations” on these files to obtain their
fit parameters— see Appendix A for details.

B. Creating Artificial Images

With all calibration files formatted as FITS images,
we read them into a Python Jupyter Notebook using the
astropy.io.fits package. We fit each model to a 6-by-
6 pixel cutout image of each spot, and evaluated them in
a box of the same size. This avoided contamination from
surrounding spots when fitting our models.

1.  GPI Gaussian Fit Parameters

Along with sub-pixel center positions, the GPI DRP
fits Gaussian 2% radii (the distance at which the spot
reaches 2% of its peak central value, in pixels) in the
x and y directions, as well as the rotation angle of the
PSF. It does not fit peak height values for the PSFs; we
determined this value ourselves in two ways. The first
method involved generating an artificial image where all
the peaks were set to 1, then dividing the original image
by this scaled-down artificial version. We then isolated a
3-by-3 pixel box around the pixel closest to the PSF cen-
ter and took the median of all the pixel values therein.
This gave us an estimate for the factor by which each
pixel in the two images differed, which should be roughly
constant if they are the same shape. We then generated
these same height-normalized Gaussians, this time pass-
ing them into the scipy.optimize.minimize function to
minimize the residuals by (1) multiplying each pixel value
by a constant factor (the Gaussian’s peak height), and (2)
adding a fixed constant to every pixel (a smooth back-
ground). For our initial best guesses for each parameter,
we used (1) the result of the previous peak height scal-
ing method and (2) the approximate mode of the pixel
values when they are represented as a histogram (Figure
2), respectively.

2. Astropy Gaussian Fit

In addition, we fit our own Gaussians to each spot us-
ing the astropy.modeling package as an independent

2 http://docs.planetimager.org/pipeline/usage/
tutorial _pol.htmlusage-quickstart-pol
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FIG. 2. Histogram showing the number of pixels with a given
pixel value; the average background level of the whole image
is assumed to be the mode of this distribution, highlighted
with the broken red line.

test of the Gaussian profile, in case there were peculiari-
ties in the GPI DRP fitting process. GPI fit parameters
and the results of our best-fit peak height values were
used as initial guesses in each model, which were then
optimized. We combined each of these individual Gaus-
sians with a Const2D background fit, with the results
of the scipy.optimize.minimize background fit as the
initial best guess.

3. Moffat Profile

Because the GPI DRP only fits Gaussians to raw image
spots, we performed our own astropy.modeling fitting
for the Moffat distribution. The default Moffat2D fitting
function in this package cannot elongate or rotate the
profiles in any dimension; this functionality is necessary,
since the PSFs at the edge of the image are highly tilted
and elongated by system optics. Fortunately, this pack-
age allows the user to create a custom model, which it can
then optimize for individual spots. Our custom Moffat
profile model is very similar to the default, only adjusting
for rotation angle and widths in each direction; the code
for this function is included in Appendix B. Similar to
the Gaussian fit, we added a Const2D model to replicate
the background noise.

4. Effective Point-Spread Function (ePSF)

After analyzing the efficacy of two well-studied distri-
butions with known functional forms, we decided to take
the approach outlined in [3] to make an empirical model
specific to the spots in GPI images. We did this using
the Python package photutils.psf; for each spot we
wanted to model, we identified a sample of surrounding
spots from the original image and extracted cutouts of

FIG. 3. An example of an effective PSF model constructed
from ~ 42 lamp image PSFs, with relative brightness plotted
logarithmically.

them with the extract_stars function. We then passed
that sample to an EPSFBuilder object that constructed
an empirical model based on those spots (see Figure 3).
The spot we intended to model was never included in the
sample.

When calling the extract_stars function, the x and y
coordinates of each spot must be passed in; the number of
spots included in each model is therefore a user-input pa-
rameter. While including too many spots in each model
can lead to impractical runtimes, it can also worsen er-
rors beyond a certain threshold. A spot’s position on the
detector has a nontrivial effect on the shape of its PSF;
specifically, spots are elongated along the line that con-
nects them to the center of the image, an effect that grows
with distance from the center. This means that drawing
on spots too far away from the target spot may system-
atically alter the shape of the resulting model, making
it a worse fit. Our findings for the optimum number of
spots to include are discussed further in Section IV.

Further, generating a single model can take anywhere



from a few seconds to several minutes; in any case, doing
so for each of the ~ 72000 spots in the image on a sin-
gle processor would be far too time-consuming. For this
reason, we did not want to generate a separate model for
every individual spot; instead, we wanted to “recycle” a
single model on multiple spots, as long as they had simi-
lar errors. To determine the optimal number of spots to
recycle over, we subtracted a single model from all spots
in a 100-by-100 pixel box (see Figure 4) and plotted the
root mean square residuals (see Section III) as a function
of distance from the central spot. The results of this are
outlined in Section IV.

III. ANALYSIS

For each method of artificial image generation, we sub-
tracted the artificial image from the original to obtain a
two-dimensional map of our residuals (see Figures 4 and
5). We then looked at the area surrounding each individ-
ual PSF and calculated the root-mean square (RMS) of
their residuals, following Equation 1:

RMS = V22 (1)

where 22 represents the collection of residual pixel values,
squared element-wise. We then directly compared the
RMS distributions of each method using histograms of
individual PSF RMS values (Figure 6).

IV. RESULTS

Out of all the methods we tested, the GPI DRP’s Gaus-
sian fit performed worst— our own Gaussians were only
marginally better. Moffat profiles were a substantial im-
provement, but ePSF models performed best by a sig-
nificant margin, even before we optimized the number
of models generated, or the number of spots included in
each model; the top histogram in Figure 6 therefore rep-
resents an upper limit.

With this knowledge, we began trying to optimize the
ePSF models. First we tested the optimum number of
spots to incorporate when generating each model— see
Section IIB4 for an explanation of why including too
many spots can increase errors. At multiple places in
the image, we identified a “central spot” that we wished
to model, then defined square regions of increasing size
centered on that spot. For each such box, we made a
model incorporating all of the spots (excluding the cen-
tral one) whose centers were bounded by that box. Each
model was then subtracted from the central spot; Figure
7 shows the results of three such investigations, display-
ing a characteristic error minimum when ~ 170 surround-
ing spots are used. Similar trends were observed at other
sites across the image, leading us to adopt this number
as the optimal model-generating sample size.

We then investigated the relationship between RMS
residuals and distance when using a single model, to see
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FIG. 4. Top: A subsection of the original flat-field image, on
a logarithmic color scale. Center: An artificial ePSF image,
using a single model (plus a local background fit) to replicate
each spot in the same region of the original flat field. Bottom:
An image where each pixel represents the difference of the
pixels in the two other images at the same location. Varia-
tion in the residuals increases with distance from the center,
indicating that the model is less effective in these regions.
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how many times we might be able to recycle each model
when generating an artificial image. Assuming that gen-
erating each ePSF model represents the majority of over-
all runtime, the factor by which this runtime is reduced is
equal to the number of spots we recycle one model on; for
instance, using the same model on the 3 centermost spots
could generate an artificial image 3 times faster than one
requiring one model per spot. We selected a distance
cutoff based on where the highest RMS residuals begin
to approach the spread of the RMS-vs-distance relation
in Figure 8. Based on our plot, we set this distance to be
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FIG. 5. Three residual images, the results of creating artificial
model images (from top to bottom: Gaussian, Moffat, ePSF)
and subtracting them from the original image.

10 pixels, which would lead us to recycle a single model
over the 5 to 7 centermost spots. This could make image
generation 5 to 7 times faster, even without running it
on a faster computer and/or on multiple processors.

V. FUTURE WORK

The ultimate test of our ePSF models will be to gen-
erate an artificial version of our calibration image before
running that through the same GPI DRP recipe as the
original image; specifically, we want to see if this results
in the same extracted flux as the original. However, we
will first need to limit the runtime of the code that gen-
erates the full artificial image, not only to speed up our
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FIG. 6. Top: A histogram of the residual root-mean squares
for the ePSF fits in a 100-by-100 pixel section of the image.
Bottom: An RMS residual histogram for our three functional-
form models (GPI Gaussian, Astropy Gaussian, and Moffat)
in the same part of the image.

investigation but to make this process practical if it is
ever incorporated into the DRP itself. We hope to do
this by recycling models on multiple spots (see Figure
8), and by executing our code on several processing cores
running in parallel.
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Appendix A: GPI DRP Recipe

While the GPI DRP is an IDL program, this project
made use of the pre-compiled version and thus only in-
terfaced directly with the GUI, recipe editor, and sta-
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FIG. 8. A plot of the RMS deviation between a model and
spots at varying distances from the central spot. The appar-
ent RMS “floor,” which trends linearly with distance, seems
to intersect the horizontal axis at around 10 pixels; recycling
a single model on even the five-or-so spots within this range
could result in a five-fold reduction of the program’s runtime
without significantly increasing errors.

tus console. To generate our desired calibration file, we
downloaded arc lamp exposures from GPI’s “Polarimetry
data reduction” tutorial dataset and broadly followed the
instructions therein to obtain spot positions and Gaus-
sian fit parameters for the file “S2013121250022.fits”.
However, this tutorial assumed the reader had an IDL
license, and thus full access to all of the recipes within
the pipeline— this meant that, rather than using the the
“Calibrate Polarization Spot Locations - Parallel” recipe,
we used the unparallelized version. No primitives or pa-
rameters were otherwise altered.

Appendix B: Python Notebook

FITS data from the GPI instrument and DRP were
read into the Jupyter Notebook development environ-
ment and manipulated using Python 3, assisted by sev-
eral mathematical, modeling, and plotting packages:

e numpy (for array manipulation, arithmetic, and
statistics)

e matplotlib.pyplot (for data visualizations)
e astropy.io.fits (to manipulate .fits files)
e astropy.stats (for more statistics)

e astropy.stats.sigma clip (for rejecting bad pix-
els)

e astropy.modeling.models (for generating and
evaluating PSF models)

e astropy.modeling.fitting (for optimizing mod-
els to match PSFs)



e scipy.optimize.minimize (to exert control over
which /how parameters are fit)

e photutils.psf.extract_stars (to easily make
cutouts of stars in a format compatible with
EPSFBuilder)

e photutils.psf.EPSFBuilder (to generate ePSF
models based on training data)

In several cases, we optimized models using the
scipy.optimize.minimize() function; however, one of
its arguments is a function which returns a floating point
number. minimize () minimizes this number by varying
the values passed in as the first argument, which must be
an iterable object if multiple parameters are being fit. To
optimize the peak and background level in the Gaussian
fits which otherwise used GPI parameters, we passed in
this function:

def total_residuals(x,data,model):
difference = data - ((x[0]*model)+x[1])
return np.sum(difference**2)

By minimizing the value returned, minimize()
brought the residuals as close to zero as it could, result-
ing in the optimum peak height (x[0]) and background
(x[1]) with the parameters given.

Similarly, when subtracting our ePSF, we had to op-
timize on GPI’s estimates for the center of the spot, as
well as the “flux” (the sum of all the pixel values in the
cutout box) and background level. For this, we passed in
the following function:

def epsf_residuals(guesses, x,y,data,model):
difference = data -
(model.evaluate (x=x,y=y,
flux=guesses[0],
x_O=guesses[1],
y_O=guesses[2])
+guesses [3])

return np.sum(difference**2)

We also created a custom two-dimensional Moffat
profile function, which astropy.modeling.models then
used to fit our improved Moffat profiles to our spots. This
function is given below:

def Moffat2D(x, y, amplitude=1.0,
x_0=0.0, y_0=0.0,
x_gamma=1.0, y_gamma=1.0,
theta=0.0, alpha=1.0):

theta_rads = (theta/360)*2*np.pi

x_new = (x*np.cos(theta_rads)) -
(y*np.sin(theta_rads))

y_new = (x*np.sin(theta_rads)) +
(y*np.cos(theta_rads))

rr_gg = (((x_new - x_0)/x_gamma) ** 2 +

((y_new - y_0)/y_gamma) ** 2)

return amplitude * (1 + rr_gg) #** (-alpha)
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