The Shape of Light

Modeling the Gemini Planet Imager's Point-Spread Function

Beck Dacus, Professor Max Millar-Blanchaer, Skyler Palatnick UCSB Physics REU 2021

Finding Exoplanets and Disks

Getty Images

Ethan Kruse

ESO/L. Calçada

Avenhaus et al. (2018)

Polarimetry with GPI

http://www.gemini.edu/images/pio/News/2014/pr2014_0 1/Photos/gpi_10.jpg

GPI with Integral Field Polarimetry

continued on next line

1+

Counting Photons

But Weight Them How?

GPI's Gaussians

Root Mean Square Distributions

$$RMS = \sqrt{mean(x^2)}$$

Moffat Profiles

Effective Point Spread Function (ePSF)

How Many Spots Per Model?

Conclusions

- Weighting pixel values of GPI spots can reduce noise in extracted polarized images
- Empirically modelled "effective point-spread functions" (ePSFs) are a compelling candidate for a GPI pixel-weighting scheme
- The optimum number of nearby spots to incorporate into a single model is ~170

Next Steps

- "Recycle" individual models and parallelize image generation to improve runtime
- Run our artificial image through the GPI pipeline to see if we can "fool" it

Thank You!

Many thanks to Professor Max Millar-Blanchaer, Skyler Palatnick, Dr. Sathya Guruswamy, and the National Science Foundation for supporting this research!