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It has previously been observed that it is possible to embed the rt-plane of the maximally extended
Schwarzschild black hole into 2 + 1 Minkowski space [1]. The construction was later on generalized
to other spherically symmetric black holes with multiple horizons [2]. This paper further generalizes
the construction to the class of Ramond-Ramond (R-R) p-branes in string theory. In particular, we
illustrate how to construct spacetime embedding diagrams for the non-extreme Ramond-Ramond
(R-R) p-branes and discuss features of the resulting diagram for the p = 6 case. We then explore the
behavior of the embedding diagrams at extremality for various choices of p.

I. INTRODUCTION

Embedding diagrams are an indispensable aid for vi-
sualizing curved spaces. A famous example in general
relativity (GR) is the Einstein-Rosen bridge, which de-
scribes two asymptotically flat regions connected together
by a black hole; see FIG. 1. The resulting diagram illus-
trates the spatial curvature of constant time slices for the
eternal Schwarzschild black hole, among other features.

FIG. 1. The rϕ-plane of the eternal Schwarzschild black hole.

An alternative approach is to construct diagrams by
embedding the rt-plane of a given spacetime into 2 + 1
Minkowski space [1,2]. This construction provides a way
to discuss the spacetime curvature, a fundamental feature
of Einstein’s theory of gravity, and its higher-dimensional
generalizations such as string theory. The purpose of this
paper is to utilize this technique to construct spacetime
embedding diagrams for the R-R p-brane solutions of
string theory [3].

The R-R p-brane solutions are interesting for several
reasons. Perhaps most importantly, in their extremal
limit, these objects play an essential role in describing
D-branes, which are the fundamental ingredients of string
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theory [4]. This relationship, in turn, has led to a land-
mark discovery involving a microscopic description of the
Bekenstein-Hawking entropy formula [5]

SBH =
AreaH
4GN

, (1)

where GN is Newton’s gravitational constant. Thus, given
the importance of the R-R p-brane solutions to theoretical
physics, it is important to have a better visual understand-
ing of their properties that can be used to aid students
and experts alike.

The outline of the paper is as follows. In section II,
we discuss the properties of the R-R p-brane solutions.
In section III, we outline the embedding construction for
the non-extreme cases. In section IV, after presenting
our general formalism, we specialize in the case of p = 6
and discuss the basic features of the resulting embedding
diagram. In section V, we show that it is possible to
embed a region near the extremal 4-brane and 5-brane
into 2 + 1 Minkowski space. We end with conclusions and
outlook in section VI.

II. R-R p-BRANE SOLUTIONS

In the so-called string conformal frame, the non-extreme
R-R p-brane solutions are [3]

ds2 =
1√
H(r)

(
− f(r) dt2 +

p∑
i=1

(dxi)2

)
+
√
H(r)

(
dr2

f(r)
+ r2dΩ2

8−p

)
, (2)

where

H(r) = 1+sinh2 α
(r0

r

)7−p
, f(r) = 1−

(r0

r

)7−p
, (3)

dΩ2
8−p denotes the round metric on S8−p, and xi are

spatial coordinates along the brane. Here t is the co-
ordinate time, and it represents the time measured by
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an observer at spatial infinity. The coordinate r is the
radial coordinate and is defined so that the area of S8−p

at r is 2π
9−p
2

Γ
(

9−p
2

)r8−p. We focus on the cases p < 7, since

we are interested in asymptotically flat solutions in 10
dimensions.

The radius r0 is called the event horizon. The metric
appears to be singular at r = r0, but this is merely a con-
sequence of a poor choice of coordinates. At this location,
the signs for the coefficient of dt2 and dr2 interchange
in eq. (2). The coordinate r becomes timelike, and an
observer inside the horizon (r < r0) will have to travel
faster than the speed of light to stay at the same radius.
At r = 0, we have a singularity. The size of S8−p contracts
to zero, and the metric diverges.

Our solution is parameterized by the two independent
quantities: r0, and α. These may be traded for the mass
M per unit p−volume Vp, and charge Q

M/Vp =
π

9−p
2 (8− p)
Γ
(

9−p
2

) r7−p
0

(
1 +

7− p
8− p

sinh2 α

)
, (4)

Q =
π

9−p
2 (7− p)
Γ
(

9−p
2

) r7−p
0 sinhα coshα, (5)

where α = [0,∞) is the parameter that controls how close
we are to extremality. More precisely, the extremal limit
(M → Q) occurs when α → ∞ and r0 → 0 (f(r) → 1)

with r7−p
0 sinh 2α held fixed.

It will be useful to understand the division of the R-R
spacetime for our construction in section III. This is best
captured with a Penrose diagram; see FIG. 2. We see that
the global structure is similar to the familiar Schwarzschild
solution except that each point now represents Rp×S8−p.1

FIG. 2. The Penrose diagram for the non-extreme R-R p-
branes. Ingoing and outgoing dotted lines represent light rays
traveling at 45°, solid black lines represent the various infinities
that are conformally rescaled, and heavy black lines represent
the future and past singularities. Regions I and III correspond
to the exterior regions, while regions II and IV represent the
two copies of the interior regions.

1 One might expect the global structure to be similar to the Reiss-
ner–Nordström spacetime since our p-branes are charged under
p + 1 form gauge potentials. However, introducing the dilaton
field in low energy string theory changes the causal structure,
making them more like Schwarzschild. Indeed, we will see that our
embedding diagram is not much different from the Schwarzschild
case [6].

III. CONSTRUCTION

We follow closely the technique outlined in [1] for the
eternal Schwarzschild black hole. This section only ad-
dresses the embedding process for region I (r > r0). The
construction for the other regions is similar, except for a
few minus signs.

We start by considering the rt-plane (dxi = dΩ8−p = 0)

ds2 = − f(r)√
H(r)

dt2 +

√
H(r)

f(r)
dr2, (6)

where H(r) and f(r) are defined in section II. It is im-
portant to note that the reduced metric contains a time
translation symmetry t→ t+ δt inherited from the origi-
nal spacetime. This suggests that it should be possible
to embed the slice as a hyperbolic surface into 2 + 1
Minkowski space with metric

ds2 = −dT 2 + dX2 + dY 2. (7)

The time translation symmetry is related to a boost sym-
metry near the point where the past and future horizons
intersect in 1 + 1 Minkowski space. In light of this, we
introduce coordinates adapted to the boost symmetry

T = ρ sinhϕ and X = ρ coshϕ, (8)

after which eq. (7) becomes

ds2 = −ρ2dϕ2 + dρ2 + dY 2. (9)

To understand the behavior near the aforementioned sur-
face, we define

r = r0 + η, (10)

where r0 � η. We further assume that η > 0, since we
are working in the region outside the future horizon. To
order η, eq. (6) becomes

ds2 ∼= −
(7− p)η
r0 coshα

dt2 +
r0 coshα

(7− p)η
dη2. (11)

The metric is singular at η = 0, but this is just an artifact
of our choice of coordinates. This problem can be circum-
vented by introducing a tortoise-like radial coordinate χ
that measures proper distance

η =
7− p

4r0 coshα
χ2, (12)

so that

ds2 ∼= −
(7− p)2

4r2
0 cosh2 α

χ2dt2 + dχ2. (13)

Now, in order for the above metric to agree with eq. (9),
we need to set

ρ = χ and ϕ =
7− p

2r0 coshα
t. (14)
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Having matched the near-horizon region of the R-R
spacetime to 1 + 1 Minkowski space, we now turn to
extend the symmetry to the entire spacetime. The killing
fields can be easily related

∂ϕ =
7− p

2r0 coshα
∂t. (15)

We can compute the norm from eq. (9) and eq. (6), and
equate and solve for ρ

ρ =

2r0 coshα

√√√√ 1−
(
r0/r
)7−p√

1+sinh2 α
(
r0/r
)7−p

7− p
. (16)

To conclude our construction, we need to give Y as a
function of r and t. But, by symmetry, Y must only
depend on r, since eq. (6) enjoys a time translation
symmetry. We can then solve for Y (r) by demanding the
metrics to agree on a t = const. time slice

√
H(r)

f(r)
dr2 = dρ2 + dY 2. (17)

Performing this calculation in Mathematica, we find

Y (r) =

∫
r

r0

dr

√√√√√√4
(

1 + sinh2 α (r0/r)
7−p
)3

− r16−4p
0 r2p−30 cosh2 α

(
2rp0r

7 + sinh2 α (rp0r
7 + r7

0r
p)
)2

4
(

1− (r0/r)
7−p
)(

1 + sinh2 α (r0/r)
7−p
)5/2

. (18)

IV. EMBEDDING DIAGRAM

We will now briefly review the basic features of our
spacetime embedding diagram. A much thorough review
for the Schwarzschild black hole can be found in [1]. With-
out loss of generality, we will focus on the case p = 6.
There is nothing special per se about our choice; the ex-
planations generalize trivially for p < 6. The choice was
particularly made to simplify the discussion, since when
p = 6, the metric on S8−p becomes S2, which is easy to
visualize. The embedding diagram for the non-extreme
6-brane is given in FIG. 3.

Perhaps the first thing to note about the non-extreme
6-brane solution is that it is asymptotically flat, i.e., as
r →∞, the metric tends to Minkowski space in spherical
coordinates

ds2 = −dt2 +

6∑
i=1

(dxi)2 + dr2 + r2dΩ2
2. (19)

This property can be readily visualized by considering
the lines on our embedding diagram. The two flanges
correspond to the two asymptotic regions (regions I and
III). If we choose any one of the lines that are drawn
to guide our eyes, we see that they become straighter
and straighter. Thus, our diagram is only curved in one
direction (XT plane), and curvature in one direction does
not change the intrinsic geometry of the R-R geometry.

Another important feature of our spacetime is the hori-
zon, and much of the interesting physics of black holes and
branes rests in understanding what happens here. One
could, for example, use our diagram to look at outward
directed light rays from an infalling observer. This can
be used to determine that the black lines that separate

FIG. 3. The spacetime embedding diagram for the non-
extreme R-R 6-brane with r0 = 1, and α = 0. The vertical
direction T is timelike, and the horizontal directions (X and
Y ) are spacelike. The black lines on our diagram represent
light rays moving at 45◦ everywhere with respect to the T
axis.

the different regions are null rays. In other words, the
horizon on our diagram is made up of light rays that are
trying to escape but never make any progress since they
stay at Y = 0.

A final feature manifest on our diagram is the singu-
larity. The singularity is located at a Minkowski time
coordinate T = ±∞. This is due to the boost-like nature
of the time translation symmetry of the R-R spacetime.
We can see that outside the black brane, the symmetry
is timelike, which means that the surface is not changing
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with time. However, inside, the symmetry is spacelike,
and thus the interior regions vary with time.

There is a natural question that arises with the location
of the singularity. If the singularity is to be located at
T = ±∞, then does it imply that an infalling observer
takes an infinite time to reach the singularity? The answer
is no. The infalling observer naturally measures proper
time along their worldline, and this turns out to be finite
at the past and future timelike infinity. This is associated
with the fact that the interior surface follows a light cone
in Minkowski space, so the whole surface moves at the
speed of light, which accounts for why a short amount of
proper time elapses.

V. EXTREMAL p-BRANES

We now turn to studying the extremal limit in which
r0 → 0. In the vicinity of the horizon (r = 0), the constant
term in H(r) may be ignored. The resulting near-horizon
metric simplifies to

ds2 = −
( r
L

) 7−p
2

dt2 +

(
L

r

) 7−p
2

dr2, (20)

with L7−p = r7−p
0 sinh2 α. For p > 3, we introduce the

tortoise coordinate

σ =
4r

p−3
4 L

7−p
4

p− 3
, (21)

so that

ds2 = −`2σ2γdt2 + dσ2, (22)

with ` =
(
p−3
4L

)γ
and γ = 7−p

p−3 . A quick comparison with

eq. (9) suggests setting ϕ = βt for β ∈ R. Then, it follows
that

ρ =
`

β
σγ . (23)

Furthermore, for σ < ( β`γ )1/(γ−1), we can solve for Y (σ)

by using

Y (σ) =

∫ σ

0

dσ

√
1−

(
`γ

β

)2

σ2(γ−1). (24)

Now, let’s consider the case of p = 4, which gives γ = 3
and ` = (4L)3. In particular, ρ ∼ σ4 ∼ r1/4, so the
horizon at r = 0 is also at σ = 0, and thus ρ = 0, as
desired. In terms of r, eq. (24) becomes

Y (r) =

∫ r

0

dr

√(
L

r

)3/2

− 9

16β2L3
√
r
. (25)

Thus, we can indeed embed the region near the extreme
4-brane into 2 + 1 Minkowski space; see FIG. 4.

FIG. 4. The embedding diagram for the extreme 4-brane with
L = 4 and β = 1.

Proceeding similarly for the case of p = 5, one arrives
at the following embedding equation for Y (r)

Y (r) =

√
4β2L2 − 1

2β
√
L

∫ r

0

dr√
r
. (26)

The embedding diagram is shown in FIG. 5.
In contrast, the analogous approach fails for p = 6

because 1 −
(
`γ
β

)2

σ2(γ−1) is negative near the horizon.

This may well be related to the fact that the singularity
is timelike for p = 6. For p ≤ 3, one finds σ →∞ at the
horizon. Thus, they cannot be embedded in the above
way in 2 + 1 Minkowski space.

FIG. 5. The embedding diagram for the extreme 5-brane with
L = 4 and β = 1.

VI. CONCLUSION

We have showed that it is possible to embed the non-
extreme R-R p-brane solutions into 2+1 Minkowski space
for all values of p ≤ 6. We also studied the extremal
versions of the R-R p-brane solutions and showed that
one could embed a region for p = 4, 5. We also noted that
our construction fails for the case of p ≤ 3, a feature that
is not manifest in the non-extreme cases.
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In the future, it would be interesting to go back to the
p = 4, 5 cases and understand what happens when we
include f(r) in the extremal metric. One can also ask if
there exists a different embedding that would work for
p = 6. Since the singularity there is timelike, one might
expect to use a more standard Minkowski coordinates
T,X, Y in terms of which the Minkowski metric is

ds2 = −dT 2 + dX2 + dY 2. (27)
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